网址:http://m.1010jiajiao.com/timu_id_363011[举报]
在棱长为
的正方体
中,
是线段
的中点,
.
(1) 求证:
^
;
(2) 求证:
//平面
;
(3) 求三棱锥
的表面积.
![]()
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用
,得到结论,第二问中,先判定
为平行四边形,然后
,可知结论成立。
第三问中,
是边长为
的正三角形,其面积为
,
因为
平面
,所以
,
所以
是直角三角形,其面积为
,
同理
的面积为
,
面积为
. 所以三棱锥
的表面积为
.
解: (1)证明:根据正方体的性质
,
因为
,
所以
,又
,所以
,
,
所以
^
.
………………4分
(2)证明:连接
,因为
,
所以
为平行四边形,因此
,
由于
是线段
的中点,所以
, …………6分
因为![]()
面
,![]()
平面
,所以
∥平面
. ……………8分
(3)
是边长为
的正三角形,其面积为
,
因为
平面
,所以
,
所以
是直角三角形,其面积为
,
同理
的面积为
,
……………………10分
面积为
. 所以三棱锥
的表面积为
![]()
查看习题详情和答案>>
设f (x)=sin 2x+
(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 该函数的图象可由
的图象经过怎样的平移和伸缩变换得到?
(Ⅱ)若f (θ)=
,其中
,求cos(θ+
)的值;
【解析】第一问中,![]()
即
变换分为三步,①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
的图象;
第二问中因为
,所以
,则
,又![]()
,
,从而![]()
进而得到结论。
(Ⅰ) 解:![]()
即
。…………………………………3分
变换的步骤是:
①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
的图象;…………………………………3分
(Ⅱ) 解:因为
,所以
,则
,又![]()
,
,从而
……2分
(1)当
时,
;…………2分
(2)当
时;![]()
查看习题详情和答案>>
某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表
|
专业 性别 |
非统计专业 |
统计专业 |
|
男 |
13 |
10 |
|
女 |
7 |
20 |
为了判断主修统计专业是否与性别有关系,根据表中的数据,得到
,因为
,所以判定主修统计专业与性别有关系,这种判断出错的可能性为_________
|
|
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
查看习题详情和答案>>
在数学证明中,①假言推理、②三段论推理、③传递关系推理、④完全归纳推理,是经常使用的四种演绎推理,下面推理过程使用到上述推理规则中的( )如(右图)
![]()
因为l
AB,所以
又因为AB//CD,所以![]()
所以![]()
A. ①②③ B.②③④
C. ②③ D.①②③④
查看习题详情和答案>>
设点
是抛物线![]()
![]()
的焦点,
是抛物线
上的
个不同的点(![]()
).
(1) 当
时,试写出抛物线
上的三个定点
、
、
的坐标,从而使得
;
(2)当
时,若
,
求证:
;
(3) 当
时,某同学对(2)的逆命题,即:
“若
,则
.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数
,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
【解析】第一问利用抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.
由抛物线定义得到
第二问设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
第三问中①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;![]()
解:(1)抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.由抛物线定义得
![]()
![]()
因为
,所以
,
故可取![]()
![]()
满足条件.
(2)设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
又因为![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;
,
则![]()
![]()
,![]()
![]()
.
故
,
,
,
是一个当
时,该逆命题的一个反例.(反例不唯一)
② 设
,分别过
作
抛物线
的准线
的垂线,垂足分别为
,
由
及抛物线的定义得
,即
.
因为上述表达式与点
的纵坐标无关,所以只要将这
点都取在
轴的上方,则它们的纵坐标都大于零,则
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(说明:本质上只需构造满足条件且
的一组
个不同的点,均为反例.)
③ 补充条件1:“点
的纵坐标
(
)满足
”,即:
“当
时,若
,且点
的纵坐标
(
)满足
,则
”.此命题为真.事实上,设
,
分别过
作抛物线
准线
的垂线,垂足分别为
,由
,
及抛物线的定义得
,即
,则
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命题为真.
补充条件2:“点
与点![]()
为偶数,
关于
轴对称”,即:
“当
时,若
,且点
与点![]()
为偶数,
关于
轴对称,则
”.此命题为真.(证略)
查看习题详情和答案>>