摘要:知平面
网址:http://m.1010jiajiao.com/timu_id_350891[举报]
将一块圆心角为
半径为a的扇形铁片截成一块矩形,如图,有两种裁法:让矩形一边在扇形的一半径OA上(图1)或让矩形一边与弦AB平行(图2)
(1)在图1中,设矩形一边PM的长为x,试把矩形PQRM的面积表示成关于x的函数;
(2)在图2中,设∠AOM=θ,试把矩形PQRM的面积表示成关于θ的函数;
(3)已知按图1的方案截得的矩形面积最大为
a2,那么请问哪种裁法能得到最大面积的矩形?说明理由.
查看习题详情和答案>>
| π |
| 3 |
(1)在图1中,设矩形一边PM的长为x,试把矩形PQRM的面积表示成关于x的函数;
(2)在图2中,设∠AOM=θ,试把矩形PQRM的面积表示成关于θ的函数;
(3)已知按图1的方案截得的矩形面积最大为
| ||
| 6 |
将一块圆心角为
半径为a的扇形铁片截成一块矩形,如图,有两种裁法:让矩形一边在扇形的一半径OA上(图1)或让矩形一边与弦AB平行(图2)
(1)在图1中,设矩形一边PM的长为x,试把矩形PQRM的面积表示成关于x的函数;
(2)在图2中,设∠AOM=θ,试把矩形PQRM的面积表示成关于θ的函数;
(3)已知按图1的方案截得的矩形面积最大为
,那么请问哪种裁法能得到最大面积的矩形?说明理由.
查看习题详情和答案>>
将一块圆心角为
半径为a的扇形铁片截成一块矩形,如图,有两种裁法:让矩形一边在扇形的一半径OA上(图1)或让矩形一边与弦AB平行(图2)
(1)在图1中,设矩形一边PM的长为x,试把矩形PQRM的面积表示成关于x的函数;
(2)在图2中,设∠AOM=θ,试把矩形PQRM的面积表示成关于θ的函数;
(3)已知按图1的方案截得的矩形面积最大为
,那么请问哪种裁法能得到最大面积的矩形?说明理由.
查看习题详情和答案>>
(1)在图1中,设矩形一边PM的长为x,试把矩形PQRM的面积表示成关于x的函数;
(2)在图2中,设∠AOM=θ,试把矩形PQRM的面积表示成关于θ的函数;
(3)已知按图1的方案截得的矩形面积最大为
查看习题详情和答案>>
在四棱锥
中,
平面
,底面
为矩形,
.
(Ⅰ)当
时,求证:
;
(Ⅱ)若
边上有且只有一个点
,使得
,求此时二面角
的余弦值.
![]()
【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,![]()
![]()
又因为
,
………………2分
又
,得证。
第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
设BQ=m,则Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
时,存在点Q使得![]()
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得![]()
由此知道a=2, 设平面POQ的法向量为![]()
,所以
平面PAD的法向量![]()
则
的大小与二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值为![]()
解:(Ⅰ)当
时,底面ABCD为正方形,![]()
![]()
又因为
,
又![]()
………………3分
(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,
![]()
则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
设BQ=m,则Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
时,存在点Q使得![]()
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得
由此知道a=2,
设平面POQ的法向量为![]()
,所以
平面PAD的法向量![]()
则
的大小与二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值为![]()
查看习题详情和答案>>