摘要:(Ⅳ) 先证:
网址:http://m.1010jiajiao.com/timu_id_34676[举报]
先阅读下列不等式的证法,再解决后面的问题:
已知a1,a2∈R,a1+a2=1,求证a12+a22≥
,
证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,从而得a12+a22≥
,
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明. 查看习题详情和答案>>
已知a1,a2∈R,a1+a2=1,求证a12+a22≥
1 |
2 |
证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,从而得a12+a22≥
1 |
2 |
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明. 查看习题详情和答案>>
(2012•北京)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.
(求:S2=
[(x1-
) 2+(x2-
) 2+…+(xn-
) 2],其中
为数据x1,x2,…,xn的平均数)
查看习题详情和答案>>
“厨余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.
(求:S2=
1 |
n |
. |
x |
. |
x |
. |
x |
. |
x |
(2012•徐汇区一模)对于数列{xn},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为a1,公差为d的无穷等差数列{an}的子数列问题,为此,他取了其中第一项a1,第三项a3和第五项a5.
(1)若a1,a3,a5成等比数列,求d的值;
(2)在a1=1,d=3 的无穷等差数列{an}中,是否存在无穷子数列{bn},使得数列(bn)为等比数列?若存在,请给出数列{bn}的通项公式并证明;若不存在,说明理由;
(3)他在研究过程中猜想了一个命题:“对于首项为正整数a,公比为正整数q(q>1)的无穷等比数列{cn},总可以找到一个子数列{bn},使得{dn}构成等差数列”.于是,他在数列{cn}中任取三项ck,cm,cn(k<m<n),由ck+cn与2cm的大小关系去判断该命题是否正确.他将得到什么结论?
查看习题详情和答案>>
(1)若a1,a3,a5成等比数列,求d的值;
(2)在a1=1,d=3 的无穷等差数列{an}中,是否存在无穷子数列{bn},使得数列(bn)为等比数列?若存在,请给出数列{bn}的通项公式并证明;若不存在,说明理由;
(3)他在研究过程中猜想了一个命题:“对于首项为正整数a,公比为正整数q(q>1)的无穷等比数列{cn},总可以找到一个子数列{bn},使得{dn}构成等差数列”.于是,他在数列{cn}中任取三项ck,cm,cn(k<m<n),由ck+cn与2cm的大小关系去判断该命题是否正确.他将得到什么结论?
(2013•徐汇区一模)对于数列{xn},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为正整数a,公比为正整数q(q>0)的无穷等比数列{an}的子数列问题.为此,他任取了其中三项ak,am,an(k<m<n).
(1)若ak,am,an(k<m<n)成等比数列,求k,m,n之间满足的等量关系;
(2)他猜想:“在上述数列{an}中存在一个子数列{bn}是等差数列”,为此,他研究了ak+an与2am的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3)他又想:在首项为正整数a,公差为正整数d的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.
查看习题详情和答案>>
(1)若ak,am,an(k<m<n)成等比数列,求k,m,n之间满足的等量关系;
(2)他猜想:“在上述数列{an}中存在一个子数列{bn}是等差数列”,为此,他研究了ak+an与2am的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3)他又想:在首项为正整数a,公差为正整数d的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.