摘要:数列是公比为的(q∈R)的等比数列
网址:http://m.1010jiajiao.com/timu_id_345716[举报]
设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{an}满足2n2-(t+bn)n+
bn=0(t∈R,n∈N*).
(1)求数列{an}的通项公式;
(2)试确定实数t的值,使得数列{bn}为等差数列.
查看习题详情和答案>>
3 | 2 |
(1)求数列{an}的通项公式;
(2)试确定实数t的值,使得数列{bn}为等差数列.
设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;等差数列{bn}满足2n2-(t+bn)n+
bn=0(t∈R,n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ) 若对任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求实数λ的取值范围;
(Ⅲ)对每个正整数k,在ak和a k+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.
查看习题详情和答案>>
3 | 2 |
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ) 若对任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求实数λ的取值范围;
(Ⅲ)对每个正整数k,在ak和a k+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.