摘要:有
网址:http://m.1010jiajiao.com/timu_id_34223[举报]
已知抛物线C:y=x2+4x+
,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.
(Ⅰ)若C在点M的法线的斜率为-
,求点M的坐标(x0,y0);
(Ⅱ)设P(-2,a)为C对称轴上的一点,在C上是否存在点,使得C在该点的法线通过点P?若有,求出这些点,以及C在这些点的法线方程;若没有,请说明理由. 查看习题详情和答案>>
2 |
7 |
(Ⅰ)若C在点M的法线的斜率为-
1 |
2 |
(Ⅱ)设P(-2,a)为C对称轴上的一点,在C上是否存在点,使得C在该点的法线通过点P?若有,求出这些点,以及C在这些点的法线方程;若没有,请说明理由. 查看习题详情和答案>>
已知函数f(x)=
,g(x)=
;
(Ⅰ)证明f(x)是奇函数;
(Ⅱ)证明f(x)在(-∞,-1)上单调递增;
(Ⅲ)分别计算f(4)-5f(2)•g(2)和f(9)-5f(3)•g(3)的值,由此概括出涉及函数f(x)和g(x)的对所有不等于零的实数x都成立的一个等式,并加以证明. 查看习题详情和答案>>
x
| ||||
5 |
x
| ||||
5 |
(Ⅰ)证明f(x)是奇函数;
(Ⅱ)证明f(x)在(-∞,-1)上单调递增;
(Ⅲ)分别计算f(4)-5f(2)•g(2)和f(9)-5f(3)•g(3)的值,由此概括出涉及函数f(x)和g(x)的对所有不等于零的实数x都成立的一个等式,并加以证明. 查看习题详情和答案>>
已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(Ⅰ)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(Ⅱ)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.
(Ⅲ)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<
,证明:当x∈(0,p)时,g(x)<f(x)<p-a.
查看习题详情和答案>>
(Ⅰ)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(Ⅱ)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.
(Ⅲ)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<
1 | a |