摘要:所以当时.f(x)在区间[0.1]上单调递减.
网址:http://m.1010jiajiao.com/timu_id_33610[举报]
已知
.
(1)求
的单调区间;
(2)证明:当
时,
恒成立;
(3)任取两个不相等的正数
,且
,若存在
使
成立,证明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
当k
0时,
>0,所以函数g(x)的增区间为(0,+
),无减区间;
当k>0时,
>0,得x>k;
<0,得0<x<k∴增区间(k,+
)减区间为(0,k)(3’)
(2)设h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 当x变化时,h(x),
的变化情况如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
设G(x)=lnx-
(x
1)
=
=![]()
0,当且仅当x=1时,
=0所以G(x) 为减函数, 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,综上,当x
1时, 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴lnx0+1=
=
∴lnx0=
-1
∴lnx0 –lnx
=
-1–lnx
=
=
=
(10’) 设H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t)
<H(1)=0∵
∴
=![]()
∴lnx0 –lnx
>0, ∴x0 >x![]()
查看习题详情和答案>>
下列四个命题:
①函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
②已知函数f(x)=log3x+2,(x∈[1,9],则函数y=[f(x)]2+f(x2)的最大值是13;
③y=x2-2|x|-3的递增区间为[1,+∞);
④已知函数f(x)满足:当x≥3时,f(x)=(
)x;当x<3时,f(x)=f(x+1),则f(1+log34)的值是
.
其中正确命题是 .
查看习题详情和答案>>
①函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
②已知函数f(x)=log3x+2,(x∈[1,9],则函数y=[f(x)]2+f(x2)的最大值是13;
③y=x2-2|x|-3的递增区间为[1,+∞);
④已知函数f(x)满足:当x≥3时,f(x)=(
| 1 |
| 3 |
| 1 |
| 36 |
其中正确命题是
下列四个命题:
①函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
②已知函数f(x)=log3x+2,(x∈[1,9],则函数y=[f(x)]2+f(x2)的最大值是13;
③y=x2-2|x|-3的递增区间为[1,+∞);
④已知函数f(x)满足:当x≥3时,f(x)=(
)x;当x<3时,f(x)=f(x+1),则f(1+log34)的值是
.
其中正确命题是 ______.
查看习题详情和答案>>
①函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
②已知函数f(x)=log3x+2,(x∈[1,9],则函数y=[f(x)]2+f(x2)的最大值是13;
③y=x2-2|x|-3的递增区间为[1,+∞);
④已知函数f(x)满足:当x≥3时,f(x)=(
| 1 |
| 3 |
| 1 |
| 36 |
其中正确命题是 ______.