摘要:所以当时.f(x)在区间[0.1]上单调递减.
网址:http://m.1010jiajiao.com/timu_id_33486[举报]
已知.
(1)求的单调区间;
(2)证明:当时,恒成立;
(3)任取两个不相等的正数,且,若存在使成立,证明:.
【解析】(1)g(x)=lnx+,= (1’)
当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;
当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)
(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表
x |
1 |
(1,e) |
e |
(e,+) |
|
- |
0 |
+ |
|
h(x) |
e-2 |
↘ |
0 |
↗ |
所以h(x)0, ∴f(x)2x-e (5’)
设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x) G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.
(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1 ∴lnx0 –lnx=-1–lnx===(10’) 设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵∴=
∴lnx0 –lnx>0, ∴x0 >x
查看习题详情和答案>>
下列四个命题:
①函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
②已知函数f(x)=log3x+2,(x∈[1,9],则函数y=[f(x)]2+f(x2)的最大值是13;
③y=x2-2|x|-3的递增区间为[1,+∞);
④已知函数f(x)满足:当x≥3时,f(x)=(
)x;当x<3时,f(x)=f(x+1),则f(1+log34)的值是
.
其中正确命题是 .
查看习题详情和答案>>
①函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
②已知函数f(x)=log3x+2,(x∈[1,9],则函数y=[f(x)]2+f(x2)的最大值是13;
③y=x2-2|x|-3的递增区间为[1,+∞);
④已知函数f(x)满足:当x≥3时,f(x)=(
1 |
3 |
1 |
36 |
其中正确命题是
下列四个命题:
①函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
②已知函数f(x)=log3x+2,(x∈[1,9],则函数y=[f(x)]2+f(x2)的最大值是13;
③y=x2-2|x|-3的递增区间为[1,+∞);
④已知函数f(x)满足:当x≥3时,f(x)=(
)x;当x<3时,f(x)=f(x+1),则f(1+log34)的值是
.
其中正确命题是 ______.
查看习题详情和答案>>
①函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
②已知函数f(x)=log3x+2,(x∈[1,9],则函数y=[f(x)]2+f(x2)的最大值是13;
③y=x2-2|x|-3的递增区间为[1,+∞);
④已知函数f(x)满足:当x≥3时,f(x)=(
1 |
3 |
1 |
36 |
其中正确命题是 ______.