网址:http://m.1010jiajiao.com/timu_id_330344[举报]
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
C
C
B
B
A
B
C
D
C
D
二、填空题
13.2 14. 15.60 16.③④
三、解答题
17.解:(1),
(2分)
又 (4分)
. (6分)
(2)
(8分)
(10分)
18.(1)证明:连结交于点,取的中点,连结,则//
且依题意,知且,
,且,
故四边形是平行四边形,
,即 (4分)
又平面,
平面, (6分)
(2)延长交的延长线于点,连结,作于点,连结.
∵平面平面,平面平面,
平面,
∴平面,
由三垂线定理,知,故就是所求二面角的平面角.(8分)
∵平面平面,平面平面
平面,故就是直线与平面成的角, (10分)
知设,则.
在中:
在中:由,,知
故平面与平面所成的锐二面角的大小为45°. (12分)
19.解:(1)记表示事无偿援助,“取出的2伯产吕中无二等品”,表示事件“取出的2件产品中恰有1件是二等品”。则、互斥,且
故
依题意,知又,得 (6分)
(2)若该批产品有100件,由(1)知,其中共有二等品100×0.2=20件
记表示事件“取出的2件产品中无二等品”,则事件与事件互斥,
依题意,知
故 (12分)
20.解:(1)在上单调递增,上单调递减,
有两根,2,
(6分)
(2)令则
因为在上恒大于0,
所以,在上单调递增,故
(12分)
21.(1)依题意,知
由,得
故,得 4分
(2)依题意,知
由,得
即,得 8分
(3)由、是相互垂直的单位向量,知,
得
记数列的前项和为,
则有
相减得,
故 12分
22.解:(1)设依题意得
(2分)
消去,,整理得. (4分)
当时,方程表示焦点在轴上的椭圆;
当时,方程表示焦点在轴上的椭圆;
当时,方程表示圆. (6分)
(2)当时,方程为设直线的方程为
(8分)
消去得 (10分)
根据已知可得,故有
直线的斜率为 (12分)
(1)求从该批产品中任取1件是二等品的概率p;
(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B). 查看习题详情和答案>>
(Ⅰ)求从该批产品中任取1件是二等品的概率p;
(Ⅱ)若该批产品共100件,从中无放回抽取2件产品,ξ表示取出的2件产品中二等品的件数.求ξ的分布列.
从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率.
(1)求从该批产品中任取1件是二等品的概率;
(2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求的分布列.
查看习题详情和答案>>