网址:http://m.1010jiajiao.com/timu_id_316214[举报]
(本小题满分12分)已知直线的参数方程为(为参数),若以直角坐标系的点为极点,方向为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程为
(1)将直线的参数方程化为普通方程,把曲线的极坐标方程化为直角坐标方程;
(2)若直线与曲线交于两点,求.
查看习题详情和答案>>
甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求(1)恰有1人译出密码的概率;
(2)若达到译出密码的概率为,至少需要多少个乙这样的人?
【解析】第一问中,考虑两种情况,是甲乙中的那个人译出密码,然后利用互斥事件概率公式相加得到。
第二问中,利用间接法n个乙这样的人都译不出密码的概率为.可以得到结论。
解:设“甲译出密码”为事件A;“乙译出密码”为事件B,则.
(1) ………………5分
(2)n个乙这样的人都译不出密码的概率为.
.解得.
达到译出密码的概率为99/100,至少需要17人.
查看习题详情和答案>>
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆的方程为,由题意得
解得
第二问若存在直线满足条件的方程为,代入椭圆的方程得
.
因为直线与椭圆相交于不同的两点,设两点的坐标分别为,
所以
所以.解得。
解:⑴设椭圆的方程为,由题意得
解得,故椭圆的方程为.……………………4分
⑵若存在直线满足条件的方程为,代入椭圆的方程得
.
因为直线与椭圆相交于不同的两点,设两点的坐标分别为,
所以
所以.
又,
因为,即,
所以.
即.
所以,解得.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
查看习题详情和答案>>
已知函数
(1)若函数的图象经过P(3,4)点,求a的值;
(2)比较大小,并写出比较过程;
(3)若,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数的图象经过P(3,4)点,所以,解得,因为,所以.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由知,.,指对数互化得到,,所以,解得所以, 或 .
解:⑴∵函数的图象经过∴,即. … 2分
又,所以. ………… 4分
⑵当时,;
当时,. ……………… 6分
因为,,
当时,在上为增函数,∵,∴.
即.当时,在上为减函数,
∵,∴.即. …………………… 8分
⑶由知,.所以,(或).
∴.∴, … 10分
∴ 或 ,所以, 或 .
查看习题详情和答案>>