网址:http://m.1010jiajiao.com/timu_id_316214[举报]
(本小题满分12分)已知直线
的参数方程为
(
为参数),若以直角坐标系
的
点为极点,
方向为极轴,选择相同的长度单位建立极坐标系,得曲线
的极坐标方程为![]()
(1)将直线
的参数方程化为普通方程,把曲线
的极坐标方程化为直角坐标方程;
(2)若直线
与曲线
交于
两点,求
.
查看习题详情和答案>>
甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为
和
,求(1)恰有1人译出密码的概率;
(2)若达到译出密码的概率为
,至少需要多少个乙这样的人?![]()
【解析】第一问中,考虑两种情况,是甲乙中的那个人译出密码,然后利用互斥事件概率公式相加得到。
第二问中,利用间接法n个乙这样的人都译不出密码的概率为
.可以得到结论。
解:设“甲译出密码”为事件A;“乙译出密码”为事件B,则
.
(1)
………………5分
(2)n个乙这样的人都译不出密码的概率为
.
.解得.![]()
达到译出密码的概率为99/100,至少需要17人.
查看习题详情和答案>>
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,且经过点![]()
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存过点
(2,1)的直线
与椭圆
相交于不同的两点
,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆
的方程为
,由题意得![]()
解得![]()
第二问若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.解得。
解:⑴设椭圆
的方程为
,由题意得![]()
解得
,故椭圆
的方程为
.……………………4分
⑵若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.
又
,
因为
,即
,
所以![]()
.
即
.
所以
,解得
.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
查看习题详情和答案>>
已知函数![]()
(1)若函数
的图象经过P(3,4)点,求a的值;
(2)比较
大小,并写出比较过程;
(3)若
,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数
的图象经过P(3,4)点,所以
,解得
,因为
,所以
.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由
知,
.,指对数互化得到
,,所以
,解得所以,
或
.
解:⑴∵函数
的图象经过
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵当
时,
;
当
时,
. ……………… 6分
因为,
,![]()
当
时,
在
上为增函数,∵
,∴
.
即
.当
时,
在
上为减函数,
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
查看习题详情和答案>>