摘要:..在单调递减--10分.--12分.所以.即的取值范围是--14分.
网址:http://m.1010jiajiao.com/timu_id_316113[举报]
设f(x)=
x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a) 查看习题详情和答案>>
| 1 | 3 |
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a) 查看习题详情和答案>>
已知![]()
(1)求函数
在
上的最小值
(2)对一切的
恒成立,求实数a的取值范围
(3)证明对一切
,都有
成立
【解析】第一问中利用
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
![]()
第二问中,
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
第三问中问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
解:(1)
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
…………4分
(2)
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
…………9分
(3)问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
查看习题详情和答案>>
设f(x)=
x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)
查看习题详情和答案>>
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)
查看习题详情和答案>>