摘要:又由 0< a< p, 得p < 2a <, -- 4分
网址:http://m.1010jiajiao.com/timu_id_31278[举报]
在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=
(Ⅰ)求角B的大小;
(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1), 有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理=2acosB,所以cosB=,B=
第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A
=2ksinA+-=-+2ksinA+=-+ (k>1).
而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.
查看习题详情和答案>>
给出以下三个命题,其中所有正确命题的序号为____.
①已知等差数列{}的前二项和为,为不共线向量,又,
若,则S2012=1006.
②是函数的最小正周期为4"的充要条件;
③已知函数f (x)=|x2-2|,若f (a) =" f" (b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1;