摘要:(2)由双曲线C的方程可得所以△A1PA2的重点G(2,2)
网址:http://m.1010jiajiao.com/timu_id_310509[举报]
(2013•松江区一模)对于双曲线C:
-
=1,(a>0,b>0),定义C1:
+
=1,为其伴随曲线,记双曲线C的左、右顶点为A、B.
(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;
(2)若双曲线C的方程为
-
=1,弦PQ⊥x轴,记直线PA与直线QB的交点为M,求动点M的轨迹方程;
(3)过双曲线C:x2-y2=1的左焦点F,且斜率为k的直线l与双曲线C交于N1、N2两点,求证:对任意的k∈[-2-
,2-
],在伴随曲线C1上总存在点S,使得
•
=
2.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;
(2)若双曲线C的方程为
x2 |
4 |
y2 |
2 |
(3)过双曲线C:x2-y2=1的左焦点F,且斜率为k的直线l与双曲线C交于N1、N2两点,求证:对任意的k∈[-2-
1 |
4 |
1 |
4 |
FN1 |
FN2 |
FS |
(2013•松江区一模)对于双曲线C:
-
=1,(a>0,b>0),定义C1:
+
=1,为其伴随曲线,记双曲线C的左、右顶点为A、B.
(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;
(2)若双曲线C的方程为x2-y2=1,过点M(-
,0)且与C的伴随曲线相切的直线l交曲线C于N1、N2两点,求△ON1N2的面积(O为坐标原点)
(3)若双曲线C的方程为
-
=1,弦PQ⊥x轴,记直线PA与直线QB的交点为M,求动点M的轨迹方程.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;
(2)若双曲线C的方程为x2-y2=1,过点M(-
3 |
(3)若双曲线C的方程为
x2 |
4 |
y2 |
2 |