摘要:所以椭圆W的方程为.-----------------4分
网址:http://m.1010jiajiao.com/timu_id_310273[举报]
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到
,再利用可以结合韦达定理求解得到m的值和圆p的方程。
解:(Ⅰ)设椭圆E的方程为
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以椭圆E的方程为…………………………4分
(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分
代入椭圆E方程,得…………………………6分
………………………7分
、………………8分
………………………9分
……………………………10分
当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,
圆P的方程为(x-2)2+(y-1)2=4;………………………………11分
同理,当m=-3时,直线l方程为y=-x-3,
圆P的方程为(x+2)2+(y+1)2=4
查看习题详情和答案>>
已知椭圆W的中心在原点,焦点在X轴上,离心率为
,椭圆短轴的一个端点与两焦点构成的三角形的面积为2
,椭圆W的左焦点为F,过x轴的一点M(-3,0)任作一条斜率不为零的直线L与椭圆W交于不同的两点A、B,点A关于X轴的对称点为C.
(1)求椭圆W的方程;
(2)求证:
=λ
(λ∈R);
(3)求△MBC面积S的最大值.
查看习题详情和答案>>
| ||
3 |
2 |
(1)求椭圆W的方程;
(2)求证:
CF |
FB |
(3)求△MBC面积S的最大值.
已知椭圆W的中心在原点,焦点在x轴上,离心率为
,两条准线间的距离为6.椭圆W的左焦点为F,过左准线与x轴的交点M任作一条斜率不为零的直线l与椭圆W交于不同的两点A、B,点A关于x轴的对称点为C.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证:
=λ
(λ∈R);
(Ⅲ)求△MBC面积S的最大值. 查看习题详情和答案>>
| ||
3 |
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证:
CF |
FB |
(Ⅲ)求△MBC面积S的最大值. 查看习题详情和答案>>