摘要:②不存在.使f(x)既是奇函数.又是偶函数,
网址:http://m.1010jiajiao.com/timu_id_30844[举报]
已知函数f(x)=
.
(1)证明:函数f(x)既是R上的奇函数,也是R上的增函数;
(2)是否存在m使f(2t2-4)+f(4m-2t)>f(0)对任意t∈[0,1]均成立?若存在,求出m的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
2x-1 | 2x+1 |
(1)证明:函数f(x)既是R上的奇函数,也是R上的增函数;
(2)是否存在m使f(2t2-4)+f(4m-2t)>f(0)对任意t∈[0,1]均成立?若存在,求出m的取值范围;若不存在,请说明理由.
对于函数f(x)=ax2+b|x-m|+c (其中a、b、m、c为常数,x∈R),有下列三个命题:
(1)若f(x)为偶函数,则m=0;
(2)不存在实数a、b、m、c,使f(x)是奇函数而不是偶函数;
(3)f(x)不可以既是奇函数又是偶函数.其中真命题的个数为( )
(1)若f(x)为偶函数,则m=0;
(2)不存在实数a、b、m、c,使f(x)是奇函数而不是偶函数;
(3)f(x)不可以既是奇函数又是偶函数.其中真命题的个数为( )
查看习题详情和答案>>
对于函数f(x)=ax2+b|x-m|+c (其中a、b、m、c为常数,x∈R),有下列三个命题:
(1)若f(x)为偶函数,则m=0;
(2)不存在实数a、b、m、c,使f(x)是奇函数而不是偶函数;
(3)f(x)不可以既是奇函数又是偶函数.其中真命题的个数为( )
查看习题详情和答案>>
(1)若f(x)为偶函数,则m=0;
(2)不存在实数a、b、m、c,使f(x)是奇函数而不是偶函数;
(3)f(x)不可以既是奇函数又是偶函数.其中真命题的个数为( )
A.0 | B.1 | C.2 | D.3 |