摘要:在N*是单调递增的.--------2分
网址:http://m.1010jiajiao.com/timu_id_30438[举报]
(本小题满分12分) 已知函数
.
(1) 设F(x)=
在
上单调递增,求
的取值范围。
(2)若函数
与
的图象有两个不同的交点M、N,求
的取值范围;
(3)在(2)的条件下,过线段MN的中点作
轴的垂线分别与
的图像和
的图像交S、T点,以S为切点作
的切线
,以T为切点作
的切线
.是否存在实数
使得![]()
![]()
,如果存在,求出
的值;如果不存在,请说明理由.
查看习题详情和答案>>
已知向量
=(
sin
,1),
=(cos
,cos2
),记f(x)=
•
,
(1)求f(x)的值域和单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,若f(A)=
,试判断△ABC的形状.
查看习题详情和答案>>
| m |
| 3 |
| x |
| 4 |
| n |
| x |
| 4 |
| x |
| 4 |
| m |
| n |
(1)求f(x)的值域和单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,若f(A)=
1+
| ||
| 2 |