网址:http://m.1010jiajiao.com/timu_id_30405[举报]
设双曲线的两个焦点分别为、,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点能否作出直线,使与双曲线交于、两点,且,若存在,求出直线方程,若不存在,说明理由.
【解析】(1)根据离心率先求出a2的值,然后令双曲线等于右侧的1为0,解此方程可得双曲线的渐近线方程.
(2)设直线l的方程为,然后直线方程与双曲线方程联立,消去y,得到关于x的一元二次方程,利用韦达定理表示此条件,得到关于k的方程,解出k的值,然后验证判别式是否大于零即可.
查看习题详情和答案>>
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到
,再利用可以结合韦达定理求解得到m的值和圆p的方程。
解:(Ⅰ)设椭圆E的方程为
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以椭圆E的方程为…………………………4分
(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分
代入椭圆E方程,得…………………………6分
………………………7分
、………………8分
………………………9分
……………………………10分
当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,
圆P的方程为(x-2)2+(y-1)2=4;………………………………11分
同理,当m=-3时,直线l方程为y=-x-3,
圆P的方程为(x+2)2+(y+1)2=4
查看习题详情和答案>>