网址:http://m.1010jiajiao.com/timu_id_303261[举报]
一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
C
D
C
A
B
C
B
D
B
C
二、填空题:
13、 14、8 15、等; 16、7
三、解答题
17、(1)由余弦定理: 又
∴ ∴
(2)∵A+B+C= ∴
∴
18、(1)周销售量为2吨,3吨,4吨的频率分别为0.2,0.5,和0.3。
(2)可能的值为8,10,12,14,16
8
10
12
14
16
P
0.04
0.2
0.37
0.3
0.09
则的分布列为
∴(千元)
19、(1)AC=1,BC=2 ,AB= ,∴∴AC
又 平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC
又∵PA平面APC ∴
(2)该几何体的主试图如下:
几何体主试图的面积为
∴ ∴
(3)取PC 的中点N,连接AN,由△PAC是边长为1的正三角形,可知
由(1)BC平面PAC,可知 ∴平面PCBM
∴
20、(1)要使得不等式能成立,只需
∴
∴,故实数m的最小值为1
(2)由得
令 ∵,列表如下:
x
0
(0,1)
1
(1,2)
2
0
1
减函数
增函数
3-2ln3
∴
21、(1)曲线C的方程为
(2),存在点M(―1,2)满足题意
22、(1)由于点B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直线上
则 因此,所以是等差数列
(2)由已知有得 同理
∴
∴
∴
(3)由(2)得,则
∴
∴
∴
由于 而
则,从而
同理:……
以上个不等式相加得:
即,从而
函数在同一个周期内,当 时,取最大值1,当时,取最小值。
(1)求函数的解析式
(2)函数的图象经过怎样的变换可得到的图象?
(3)若函数满足方程求在内的所有实数根之和.
【解析】第一问中利用
又因
又 函数
第二问中,利用的图象向右平移个单位得的图象
再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,
第三问中,利用三角函数的对称性,的周期为
在内恰有3个周期,
并且方程在内有6个实根且
同理,可得结论。
解:(1)
又因
又 函数
(2)的图象向右平移个单位得的图象
再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,
(3)的周期为
在内恰有3个周期,
并且方程在内有6个实根且
同理,
故所有实数之和为
查看习题详情和答案>>
A.y=sinx的图象向右平移个单位得y=cosx的图象
B.y=cosx的图象向右平移个单位得y=sinx的图象
C.当φ>0时,y=sinx的图象向右平移φ个单位可得y=sin(x+φ)的图象
D.当φ<0时,y=sinx的图象向左平移φ个单位可得y=sin(x-φ)的图象
查看习题详情和答案>>
A.g(x)=sin2x,h(x)=sin4
B.g(x)=sin2x,h(x)=sin
C.,
D.,
查看习题详情和答案>>