网址:http://m.1010jiajiao.com/timu_id_299724[举报]
如图是单位圆上的点,分别是圆与轴的两交点,为正三角形.
(1)若点坐标为,求的值;
(2)若,四边形的周长为,试将表示成的函数,并求出的最大值.
【解析】第一问利用设
∵ A点坐标为∴ ,
(2)中 由条件知 AB=1,CD=2 ,
在中,由余弦定理得
∴
∵ ∴ ,
∴ 当时,即 当 时 , y有最大值5. .
查看习题详情和答案>>
在中,,分别是角所对边的长,,且
(1)求的面积;
(2)若,求角C.
【解析】第一问中,由又∵∴∴的面积为
第二问中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C为内角 ∴
解:(1) ………………2分
又∵∴ ……………………4分
∴的面积为 ……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴ ……………………9分
又由余弦定理得:
又C为内角 ∴ ……………………12分
另解:由正弦定理得: ∴ 又 ∴
查看习题详情和答案>>
已知△的内角所对的边分别为且.
(1) 若, 求的值;
(2) 若△的面积 求的值.
【解析】本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力。第一问中,得到正弦值,再结合正弦定理可知,,得到(2)中即所以c=5,再利用余弦定理,得到b的值。
解: (1)∵, 且, ∴ . 由正弦定理得, ∴.
(2)∵ ∴. ∴c=5
由余弦定理得,
∴
查看习题详情和答案>>