网址:http://m.1010jiajiao.com/timu_id_28534[举报]
一、选择题:(本题每小题5分,共50分)
1
2
3
4
5
6
7
8
9
10
D
B
C
D
D
C
B
A
A
C
二、填空题:(本题每小题4分,共16分)
11. 12. 13. 14.
三、解答题(本大题6小题,共84分。解答应写出文字说明,证明过程或演算步骤)
15.(本小题满分14分)
解得…………………4分
又
∵+1> 得B={y|y<或y>+1}……………………8分
∵A∩B=φ
∴ 1
+19…………………12分
∴-2…………………14分
16.(本小题满分14分)
解:(1),
由得 又 ………6分
(2)因
………8分
又,,则
即…………………10分
…14分
17.(本小题满分14分)
解: (…………………3分)
=(…………………7分)
又,,
(1)若,即时,==,(…………10分)
(2)若,即时,
所以当即时,=(…………………13分)
(…………………14分)
18.(本小题满分14分)
解:(1)令,,即
由
∵,∴,即数列是以为首项、为公差的等差数列, ∴ …………8分
(2)化简得,即
∵,又∵时,…………12分
∴各项中最大项的值为…………14分
19.(本小题满分14分)
解:(1),由题意―――①
又―――②
联立得 …………5分
(2)依题意得 即 ,对恒成立,设,则
解得
当 ……10分
则
又,所以;故只须 …………12分
解得
即的取值范围是 …………14分
20.(本小题满分14分)
解:(1)由,
即函数的图象交于不同的两点A,B; ……4分(2)
已知函数,的对称轴为,
故在[2,3]上为增函数, ……………6分
……8分
(3)设方程
……10分
……12分
设的对称轴为上是减函数, ……14分
(Ⅰ)证明:当a=3、b=2时函数f(x)与g(x)的图象交于不同的两点A,B.
(Ⅱ)若函数F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值为21,试求a,b的值. 查看习题详情和答案>>
7 | 4 |
(Ⅰ)求f(x)的解析式;
(Ⅱ) 求函数h(x)=f(x)-(2t-3)x在区间[0,1]上的最小值,其中t∈R;
(Ⅲ)设f(x)与g(x)是定义在同一区间[p,q]上的两个函数,若函数F(x)=f(x)-g(x)在x∈[p,q]上有两个不同的零点,则称f(x)和g(x)在[p,q]上是“关联函数”,区间[p,q]称为“关联区间”.若f(x)与g(x)在[0,3]上是“关联函数”,求m的取值范围.