摘要:∴二面角C-PA-B的大小为arcsin.--14分解法二:(I)同解法一.
网址:http://m.1010jiajiao.com/timu_id_282029[举报]
如图,正四棱锥中P-ABCD,点E,F分别在棱PA,BC上,且AE=2PE,
(1)问点F在何处时,EF⊥AD?
(2)当EF⊥AD且正三角形PAB的边长为a时,求点F到平面PAB的距离;
(3)在第(2)条件下,求二面角C-PA-B的大小. 查看习题详情和答案>>
(1)问点F在何处时,EF⊥AD?
(2)当EF⊥AD且正三角形PAB的边长为a时,求点F到平面PAB的距离;
(3)在第(2)条件下,求二面角C-PA-B的大小. 查看习题详情和答案>>
如图,正四棱锥中P-ABCD,点E,F分别在棱PA,BC上,且AE=2PE,
(1)问点F在何处时,EF⊥AD?
(2)当EF⊥AD且正三角形PAB的边长为a时,求点F到平面PAB的距离;
(3)在第(2)条件下,求二面角C-PA-B的大小.
查看习题详情和答案>>
(1)问点F在何处时,EF⊥AD?
(2)当EF⊥AD且正三角形PAB的边长为a时,求点F到平面PAB的距离;
(3)在第(2)条件下,求二面角C-PA-B的大小.
查看习题详情和答案>>
(2008•宣武区一模)如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB
(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值.
查看习题详情和答案>>
(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值.