摘要:又平面PBE.所以平面PBE⊥平面PAB.
网址:http://m.1010jiajiao.com/timu_id_280028[举报]
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小. 查看习题详情和答案>>
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小. 查看习题详情和答案>>
(2009•枣庄一模)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=
.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A-BE-P的大小.
查看习题详情和答案>>
3 |
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A-BE-P的大小.
在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,底面ABCD是边长为2的菱形,∠BAD=60°,E是AD的中点,F是PC的中点.
(1)求证:BE⊥平面PAD;
(2)求证:EF∥平面PAB;
(3)求直线EF与平面PBE所成角的余弦值. 查看习题详情和答案>>
(1)求证:BE⊥平面PAD;
(2)求证:EF∥平面PAB;
(3)求直线EF与平面PBE所成角的余弦值. 查看习题详情和答案>>
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=
.
(1)证明:平面PBE⊥平面PAB;
(2)求直线PA与平面 BEP所成的角. 查看习题详情和答案>>
3 |
(1)证明:平面PBE⊥平面PAB;
(2)求直线PA与平面 BEP所成的角. 查看习题详情和答案>>
如图,三棱锥中,侧面底面, ,且,.(Ⅰ)求证:平面;
(Ⅱ)若为侧棱PB的中点,求直线AE与底面所成角的正弦值.
【解析】第一问中,利用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,又EH//PO,所以EH平面ABC ,
则为直线AE与底面ABC 所成角,
解
(Ⅰ) 证明:由用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,
又EH//PO,所以EH平面ABC ,
则为直线AE与底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=,
由(Ⅰ)已证平面PBC,所以,即,
故,
于是
所以直线AE与底面ABC 所成角的正弦值为
查看习题详情和答案>>