摘要:所以实数的取值范围是 14分
网址:http://m.1010jiajiao.com/timu_id_27651[举报]
(本题满分14分)
已知函数,,
(Ⅰ)当时,若在上单调递增,求的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得是的最大值,是的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。
查看习题详情和答案>>
(本题满分14分)
已知函数,,
(Ⅰ)当时,若在上单调递增,求的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得是的最大值,是的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。
(本题满分14分)
已知函数,,
(Ⅰ)当时,若在上单调递增,求的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得是的最大值,是的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。
已知函数,,
(Ⅰ)当时,若在上单调递增,求的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得是的最大值,是的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。
(2011•洛阳二模)给出下列命题:
①设向量
,
满足|
|=2,|
|=1,
,
的夹角为
.若向量2t
+7
与
+t
的夹角为钝角,则实数t的取值范围是(-7,-
);
②已知一组正数x1,x2,x3,x4的方差为s2=
(x12+x22+x32+x42)-4,则x1+1,x2+1,x3+1,x4+1的平均数为1
③设a,b,c分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=o与x2+2cx-b2=0有公共根的充要条件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的数字之和,如112+1=122,1+2+2=5,所以f(n)=5,记f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,则f20(5)=11.
上面命题中,假命题的序号是
查看习题详情和答案>>
①设向量
e1 |
e2 |
e1 |
e2 |
e1 |
e2 |
π |
3 |
e1 |
e2 |
e1 |
e2 |
1 |
2 |
②已知一组正数x1,x2,x3,x4的方差为s2=
1 |
4 |
③设a,b,c分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=o与x2+2cx-b2=0有公共根的充要条件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的数字之和,如112+1=122,1+2+2=5,所以f(n)=5,记f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,则f20(5)=11.
上面命题中,假命题的序号是
②
②
(写出所有假命题的序号).本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)(本小题满分7分)选修4—2:矩阵与变换
已知二阶矩阵有特征值及对应的一个特征向量.
(Ⅰ)求矩阵;
(Ⅱ)设曲线在矩阵的作用下得到的方程为,求曲线的方程.
(2)(本小题满分7分)选修4—4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为 (为参数),若圆在以该直角坐标系的原点为极点、轴的正半轴为极轴的极坐标系下的方程为.
(Ⅰ)求曲线的普通方程和圆的直角坐标方程;
(Ⅱ)设点是曲线上的动点,点是圆上的动点,求的最小值.
(3)(本小题满分7分)选修4—5:不等式选讲
已知函数,不等式在上恒成立.
(Ⅰ)求的取值范围;
(Ⅱ)记的最大值为,若正实数满足,求的最大值.
查看习题详情和答案>>