摘要:(2)方法1:因为对一切实数.都有
网址:http://m.1010jiajiao.com/timu_id_27627[举报]
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2≤
.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤
.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为 .
查看习题详情和答案>>
2 |
2 |
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a2)2-8≤0,所以a1+a2.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为 .
查看习题详情和答案>>
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a2)2-8≤0,所以a1+a2.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为 .
查看习题详情和答案>>