摘要:∴ ∴点M的轨迹方程为抛物线y=2ax2+1 (2)设以点P(x1.y1)为切点的曲线C的切线方程l1:y-y1= k1(x-x1) 将l1方程代入曲线C:y=ax2并整理得 ax2- k1x-y1+k1x1=0.
网址:http://m.1010jiajiao.com/timu_id_273849[举报]
如图,已知点C的坐标是(2,2)过点C的直线CA与X轴交于点A,过点C且与直线CA垂直的直线CB与Y轴交于点B,设点M是线段AB的中点,则点M的轨迹方程为
查看习题详情和答案>>
x+y-2=0
x+y-2=0
.已知P为抛物线y=2x2+1上的动点,定点A(0,-1),点M分
所成的比为2,则点M的轨迹方程为( )
PA |
A、y=6x2-
| ||
B、x=6y2-
| ||
C、y=3x2+
| ||
D、y=-3x2-1 |