网址:http://m.1010jiajiao.com/timu_id_256730[举报]
如图,已知直线(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求与
的值;
(Ⅱ)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
【解析】第一问中利用圆:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即,解得
(
舍去)
设与抛物线的相切点为
,又
,得
,
.
代入直线方程得:,∴
所以
,
第二问中,由(Ⅰ)知抛物线方程为
,焦点
. ………………(2分)
设,由(Ⅰ)知以
为切点的切线
的方程为
.
令,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴ 因为
是定点,所以点
在定直线
第三问中,设直线,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即,解得
(
舍去). …………………(2分)
设与抛物线的相切点为
,又
,得
,
.
代入直线方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线方程为
,焦点
. ………………(2分)
设,由(Ⅰ)知以
为切点的切线
的方程为
.
令,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴ 因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是
查看习题详情和答案>>
在△中,∠
,∠
,∠
的对边分别是
,且
.
(1)求∠的大小;(2)若
,
,求
和
的值.
【解析】第一问利用余弦定理得到
第二问
(2) 由条件可得
将 代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
查看习题详情和答案>>
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) |
2 |
3 |
4 |
5 |
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
(注:)
【解析】第一问中利用数据描绘出散点图即可
第二问中,由表中数据得=52.5,
=3.5,
=3.5,
=54,∴
=0.7,
=1.05得到回归方程。
第三问中,将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时)得到结论。
(1)散点图如下图.
………………4分
(2)由表中数据得=52.5,
=3.5,
=3.5,
=54,
∴=…=0.7,
=…=1.05.
∴=0.7x+1.05.回归直线如图中所示.………………8分
(3)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时),
∴预测加工10个零件需要8.05小时
查看习题详情和答案>>
设抛物线:
(
>0)的焦点为
,准线为
,
为
上一点,已知以
为圆心,
为半径的圆
交
于
,
两点.
(Ⅰ)若,
的面积为
,求
的值及圆
的方程;
(Ⅱ)若,
,
三点在同一条直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
,
距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线于
轴的焦点为E,圆F的半径为
,
则|FE|=,
=
,E是BD的中点,
(Ⅰ) ∵,∴
=
,|BD|=
,
设A(,
),根据抛物线定义得,|FA|=
,
∵的面积为
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=, ∴圆F的方程为:
;
(Ⅱ) 解析1∵,
,
三点在同一条直线
上, ∴
是圆
的直径,
,
由抛物线定义知,∴
,∴
的斜率为
或-
,
∴直线的方程为:
,∴原点到直线
的距离
=
,
设直线的方程为:
,代入
得,
,
∵与
只有一个公共点,
∴
=
,∴
,
∴直线的方程为:
,∴原点到直线
的距离
=
,
∴坐标原点到,
距离的比值为3.
解析2由对称性设,则
点关于点
对称得:
得:,直线
切点
直线
坐标原点到距离的比值为
查看习题详情和答案>>