网址:http://m.1010jiajiao.com/timu_id_253790[举报]
一、选择题:(本大题共12小题,每小题5分,共60分)
20080801
2. 提示: 故选D
3. 提示:已知得d=3,a5=14,=3a5=42.故选B
4. 提示: 判断cosα>0,sinα<0,数形结合.故选B
20090505
= 故选C
6. 提示: 如图,取G的极端位置, 问题转化为求AE与的位置关系,取AD的中点M,连接MF、可证 可见AE与FG所成的角为 A故选D
7. 提示: 当x>0时,的图像相同,故可排除(A)、(C)、(D).故选B
8.令=5,得3n=5r+10 , 当r=1时,n=5.故选C
9.提示由,得,所以, 点P的轨迹是圆(除去与直线AB的交点).故选B
10.提示:令f(x)= x2?(a2+b2?6b)x+ a2+b2+2a?4b+1,则由题意有f(0)= a2+b2+2a?6b+1≤0且f(1)=2a+2b+2≥0,即(a+1)2+(b?2)2≤4且a+b+1≥0,在直角坐标平面aOb上作出其可行域如图所示,而a2+b2+4a=(a+2)2+b2?4的几何意义为|PA|2?4(其中P(a,b)为可行域内任意的一点,A(?2,0)). 由图可知,当P点在直线l:a+b+1=0上且AP⊥l时取得最小值;当P点为AC(C为圆(a+1)2+(b?2)2≤4的圆心)的延长线与圆C的交点时达到最大值. 又A点的直线l的距离为,|AC|=,所以a2+b2+4a的最大值和最小值分别为?和(+2)2?4=5+4.故选B.
11.提示: 易知数列{an}是以3为周期的数列,a1=2, a2= , a3= , a4 =2,
故 a2009=故选B
12.提示: ∵是定义在R上的奇函数,
∴,又由已知,
∴,(A)成立;
∵,
∴(B)成立;当时,又为奇函数,
∴,,且,
∴(C)即,
∴(C)成立;对于(D),有,由于时的符号不确定,
∴未必成立。故选D
二、填空题:(本大题共4小题,每小题5分,共20分)
13.5;提示: Tr+1=(x)n-r(-)r,由题意知:-+=27n=9
∴展开式共有10项,二项式系数最大的项为第五项或第六项,故项的系数最大的项为第五项。
14.(0,1)∪(1,10) ;提示: 当a>1时,不等式化为10-ax>a,要使不等式有解,必须10-a>0
∴1<a<10
当0<a<1时,不等式化为0<10-ax<a10-a<ax<10不等式恒有解
故满足条件a的范围是(0,1)∪(1,10)
15. ;提示: P=1-=
16. 提示:当直角三角形的斜边垂直与平面时,所求面积最大。
三、解答题:(本大题共6小题,共70分)
17.(本大题10分)(1)不是,假设是在上的生成函数,则
存在正实数使得恒成立,令,得,与
矛盾,
所以函数一定不是在上的生成函数…………5分
(2)设,因为
所以,当且仅当且时等号成立,
即时
而,
…………………………………………10分
18.(Ⅰ)连接A1C.∵A1B1C1-ABC为直三棱柱,
∴CC1⊥底面ABC,∴CC1⊥BC.
∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分
∴为与平面A1C1CA所成角,
.
∴与平面A1C1CA所成角为.…………4分
(Ⅱ)分别延长AC,A1D交于G. 过C作CM⊥A1G 于M,连结BM,
∵BC⊥平面ACC1A1,∴CM为BM在平面A1C1CA内的射影,
∴BM⊥A1G,∴∠CMB为二面角B―A1D―A的平面角,
平面A1C1CA中,C1C=CA=2,D为C1C的中点,
∴CG=2,DC=1 在直角三角形CDG中,,.
即二面角B―A1D―A的大小为.……………………8分
(Ⅲ)取线段AC的中点F,则EF⊥平面A1BD.
证明如下:
∵A1B1C1―ABC为直三棱柱,∴B1C1//BC,
∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,
∵EF在平面A1C1CA内的射影为C1F,当F为AC的中点时,
C1F⊥A1D,∴EF⊥A1D.
同理可证EF⊥BD,∴EF⊥平面A1BD.……………………12分
19.(解:(1)分别在下表中,填写随机变量和的分布列:
…4分
(2);;
…………………….. 9分
∴周长的分布列为:
……….. 10分
∴ …. 12分
20.(Ⅰ) 设C(x, y),
∵ , ,
∴ ,
∴ 由定义知,动点C的轨迹是以A、B为焦点,
长轴长为的椭圆除去与x轴的两个交点.
∴ . ∴ .
∴ W: . …………………………………………… 2分
(Ⅱ) 设直线l的方程为,代入椭圆方程,得.
整理,得. ①………………………… 5分
因为直线l与椭圆有两个不同的交点P和Q等价于
,解得或.
∴ 满足条件的k的取值范围为 ………… 7分
(Ⅲ)设P(x1,y1),Q(x2,y2),则=(x1+x2,y1+y2),
由①得. ②
又 ③
因为,, 所以.……………………… 11分
所以与共线等价于.
将②③代入上式,解得.
所以存在常数k,使得向量与共线.…………………… 12分
21.解:(1)由题意得
解得,将代入,化简得
;………………4分
(2)由题知,因为,所以
令,则,
并且,因此,
从而,得,………..8分
(2)因为时,故
,
从而………………12分
22.解: Ⅰ)∵=a+,x∈(0,e),∈[,+∞………………1分
(1)若a≥-,则≥0,从而f(x)在(0,e)上增函数.
∴f(x)max =f(e)=ae+1≥0.不合题意. …………………………………3分
(2)若a<-,则由>0a+>0,即0<x<-
由f(x)<0a+<0,即-<x≤e.
∴f(x)=f(-)=-1+ln(-).
令-1+ln(-)=-3,则ln(-)=-2.∴-=e,
即a=-e2. ∵-e2<-,∴a=-e2为所求. ……………………………6分
(Ⅱ)当a=-1时,f(x)=-x+lnx,=-1+=.
当0<x<1时,>0;当x>1时,<0.
∴f(x)在(0,1)上是增函数,在(1,+∞)上减函数.
从而f(x)=f(1)=-1.∴f(x)=-x+lnx≤-1,从而lnx≤x-1. ………8分
令g(x)=|f(x)|--=x-lnx--=x-(1+)lnx-
(1)当0<x<2时,有g(x)≥x-(1+)(x-1)-=->0.
(2)当x≥2时,g′(x)=1-[(-)lnx+(1+)?]=
=.
∴g(x)在[2,+∞上增函数,
∴g(x)≥g(2)=
综合(1)、(2)知,当x>0时,g(x)>0,即|f(x)|>.
故原方程没有实解. ……………………………………12分
本小题满分12分)某商店搞促销活动,规则如下:木箱内放有5枚白棋子和5枚黑棋子,顾客从中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,则有奖品,奖励办法如下表:
(本小题满分12分)
福州市某大型家电商场为了使每月销售空调和冰箱获得的总利润达到最大,对某月即将出售的空调和冰箱进行了相关调查,得出下表:
资金
每台空调或冰箱所需资金
(百元)
月资金最多供应量
空调
冰箱
进货成本
30
20
300
工人工资
5
10
110
每台利润
6
8
问:该商场如果根据调查得来的数据,应该怎样确定空调和冰箱的月供应量,才能使商场获得的总利润最大?总利润的最大值为多少元?
本小题满分12分)
某商店搞促销活动,规则如下:木箱内放有5枚白棋子和5枚黑棋子,顾客从中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,则有奖品,奖励办法如下表:
取出的棋子
奖品
5枚白棋子
价值50元的商品
4枚白棋子
价值30元的商品
3枚白棋子
价值10元的商品
如果取出的不是上述三种情况,则顾客需用50元购买商品.
(1)求获得价值50元的商品的概率;
(2)求获得奖品的概率;
(3)如果顾客所买商品成本价为10元,假设有10 000人次参加这项促销活动,则商家可以获得的利润大约是多少?(精确到元)
(本小题满分12分)
国家教育部、体育总局和共青团中央曾共同号召,在全国各级各类学校要广泛、深入地开展全国亿万大中小学生阳光体育运动.为此某网站于2010年1月18日至24日,在全国范围内进行了持续一周的在线调查,随机抽取其中200名大中小学生的调查情况,就每天的睡眠时间分组整理如下表所示:
序号()
每天睡眠时间
(小时)
组中值()
频数
频率
()
1
[4,5)
4.5
0.04
2
[5,6)
5.5
52
0.26
3
[6,7)
6.5
60
0.30
4
[7,8)
7.5
56
0.28
[8,9)
8.5
0.10
[9,10)
9.5
0.02
(Ⅰ)估计每天睡眠时间小于8小时的学生所占的百分比约是多少;
(Ⅱ)该网站利用右边的算法流程图,对样本数据作进一步统计分析,求输出的S的值,并说明S的统计意义.