摘要:.-4分(2)如图所示.对应的一个函数关系式为
网址:http://m.1010jiajiao.com/timu_id_2509[举报]
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力 第一问要利用相似比得到结论。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)
第二问,
当且仅当
(3)令
∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.
∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).
查看习题详情和答案>>
已知函数f(x)的定义域为[-1,5],部分对应值如下表.f(x)的导函数y=f'(x)的图象如图所示.
①函数f(x)在[0,1]上是减函数; ②如果当x∈[-1,t]时,f(x)最大值是2,那么t的最大值为4; ③函数y=f(x)-a有4个零点,则1≤a<2; ④已知(a,b)是y=
其中真命题的个数是( ) |
查看习题详情和答案>>
已知函数f(x)的定义域为[-1,5],部分对应值如下表.f(x)的导函数y=f'(x)的图象如图所示.
下列关于函数f(x)的命题:
①函数f(x)在[0,1]上是减函数;
②如果当x∈[-1,t]时,f(x)最大值是2,那么t的最大值为4;
③函数y=f(x)-a有4个零点,则1≤a<2;
④已知(a,b)是y=
的一个单调递减区间,则b-a的最大值为2.
其中真命题的个数是( )
查看习题详情和答案>>
x | -1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 2 | 0 | 2 | 1 |
①函数f(x)在[0,1]上是减函数;
②如果当x∈[-1,t]时,f(x)最大值是2,那么t的最大值为4;
③函数y=f(x)-a有4个零点,则1≤a<2;
④已知(a,b)是y=
2012 |
f(x) |
其中真命题的个数是( )
A.4个 | B.3个 | C.2个 | D.1个 |
已知函数f(x)的定义域为[-1,5],部分对应值如下表.f(x)的导函数y=f'(x)的图象如图所示.
下列关于函数f(x)的命题:
①函数f(x)在[0,1]上是减函数;
②如果当x∈[-1,t]时,f(x)最大值是2,那么t的最大值为4;
③函数y=f(x)-a有4个零点,则1≤a<2;
④已知(a,b)是的一个单调递减区间,则b-a的最大值为2.
其中真命题的个数是( )
A.4个
B.3个
C.2个
D.1个
查看习题详情和答案>>
x | -1 | 2 | 4 | 5 | |
f(x) | 1 | 2 | 2 | 1 |
①函数f(x)在[0,1]上是减函数;
②如果当x∈[-1,t]时,f(x)最大值是2,那么t的最大值为4;
③函数y=f(x)-a有4个零点,则1≤a<2;
④已知(a,b)是的一个单调递减区间,则b-a的最大值为2.
其中真命题的个数是( )
A.4个
B.3个
C.2个
D.1个
查看习题详情和答案>>