摘要: 已知数列{a n}的前n项和为S n.且对任意正自然数n.总有Sn=p(a n-1).数列{b n}中.b n=2n+q. (1)求数列{a n}的通项公式, (2)若a1=b1.a2>b2.求常数p的取值范围.解:(1)当n=1时.a1=S1=p(a1-1).
网址:http://m.1010jiajiao.com/timu_id_24479[举报]
(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =+ 4n – 1 , nÎN*.
(1) 证明:(a n– 2)2 –=0 (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .
查看习题详情和答案>>(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =+ 4n – 1 , nÎN*.
(1) 证明:(a n– 2)2 –="0" (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .
(1) 证明:(a n– 2)2 –="0" (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .
(本小题满分12分)已知等差数列{an}的前n项和为Sn,且a3=5,S15="225."
(Ⅰ)求数列{an}的通项an;
(Ⅱ)设bn=+2n,求数列{bn}的前n项和Tn.