网址:http://m.1010jiajiao.com/timu_id_24028[举报]
已知函数=.
(Ⅰ)当时,求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当时,=,
当≤2时,由≥3得,解得≤1;
当2<<3时,≥3,无解;
当≥3时,由≥3得≥3,解得≥8,
∴≥3的解集为{|≤1或≥8};
(Ⅱ) ≤,
当∈[1,2]时,==2,
∴,有条件得且,即,
故满足条件的的取值范围为[-3,0]
查看习题详情和答案>>
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,,为数列的前n项和.
(1)求数列的通项公式和数列的前n项和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
【解析】第一问利用在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
第三问,
若成等比数列,则,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
.
(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
综合①、②可得的取值范围是.
(3),
若成等比数列,则,
即.
由,可得,即,
.
又,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2, n=12时,数列中的成等比数列
查看习题详情和答案>>
4. m>2或m<-2 解析:因为f(x)=在(-1,1)内有零点,所以f(-1)f(1)<0,即(2+m)(2-m)<0,则m>2或m<-2
随机变量的所有等可能取值为1,2…,n,若,则( )
A. n=3 B.n=4 C. n=5 D.不能确定
5.m=-3,n=2 解析:因为的两零点分别是1与2,所以,即,解得
6.解析:因为只有一个零点,所以方程只有一个根,因此,所以
查看习题详情和答案>>袋子中装有大小形状完全相同的m个红球和n个白球,其中m,n满足m>n≥2且m+n≤l0(m,n∈N+),若从中取出2个球,取出的2个球是同色的概率等于取出的2个球是异色的概率.
(Ⅰ) 求m,n的值;
(Ⅱ) 从袋子中任取3个球,设取到红球的个数为,求的分布列与数学期望.
【解析】第一问中利用,解得m=6,n=3.
第二问中,的取值为0,1,2,3. P(=0)= , P(=1)=
P(=2)= , P(=3)=
得到分布列和期望值
解:(I)据题意得到 解得m=6,n=3.
(II)的取值为0,1,2,3.
P(=0)= , P(=1)=
P(=2)= , P(=3)=
的分布列为
所以E=2
查看习题详情和答案>>
已知,函数
(1)当时,求函数在点(1,)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中,那么当时, 又 所以函数在点(1,)的切线方程为;(2)中令 有
对a分类讨论,和得到极值。(3)中,设,,依题意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 当时, 又
∴ 函数在点(1,)的切线方程为 --------4分
(Ⅱ)令 有
① 当即时
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
极大值 |
极小值 |
故的极大值是,极小值是
② 当即时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。
综上所述 时,极大值为,无极小值
时 极大值是,极小值是 ----------8分
(Ⅲ)设,
对求导,得
∵,
∴ 在区间上为增函数,则
依题意,只需,即
解得 或(舍去)
则正实数的取值范围是(,)
查看习题详情和答案>>