摘要:17.已知常数a满足a>0.变量x.y满足x≥0.y≥0.且ax+y=2.若M(a)表示代数式的最大值时.求M(a)的表达式.
网址:http://m.1010jiajiao.com/timu_id_23132[举报]
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
D
D
A
C
A
A
D
C
C
A
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上。
13. 10 14. 15. ①②③ 16. 8
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
17.
18.(1)x>1或x<-1
(2)a>1时,
0<a≤1/2时,不存在
1/2<a<1时,
19. f (2+x) = f (2-x) ∴f (4-2x) = f (2x)
0≤2x≤2,即0≤x≤1,无解
2≤2x≤4,即1≤x≤2,由f (x)<f (4-2x)得4/3<x≤2
20.P1=11/12 P2=13/36
21.
22.(1)
(2)
已知奇函数f(x)满足:①定义域为R;②f(x)<a(常数a>0);③在(0,+∞)上单调递增;④对任意一个小于a的正数d,存在一个自变量x0,使f(x0)>d.
(1)请写出一个这样的函数的解析式:_______________.
(2)请猜想:=______________.
查看习题详情和答案>>
已知f(x)=a2x-
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
≥
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列. 查看习题详情和答案>>
1 |
2 |
(1)可以证明:定理“若a、b∈R*,则
a+b |
2 |
ab |
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列. 查看习题详情和答案>>
已知f(x)=a2x-
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
≥
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.
查看习题详情和答案>>
1 |
2 |
(1)可以证明:定理“若a、b∈R*,则
a+b |
2 |
ab |
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.
已知f(x)=a2x-x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.
查看习题详情和答案>>
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.
查看习题详情和答案>>