摘要:23.椭圆的中心在原点0.它的短轴长为.右焦点为.右准线与轴相交于点A.并且.
网址:http://m.1010jiajiao.com/timu_id_21226[举报]
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
C
C
A
C
B
C
C
B
B
C
二、填空题
13.() 14.x=0或y=0 15.4 16.2/3 17.20 18.①④
三、解答题
19.解:A(―4,2)关于直线:对称的点为,因为直线是中的平分线,可以点在直线上,故直线的方程是,由,,则是以为直角的三角形,,10
20.解:由,,设双曲线方程为,椭圆方程为,它们的焦点,则
,又,,双曲线方程为,椭圆方程为
21.解:,设椭圆方程为①,设过和的直线方程为②,将②代入①得-③,设,的中点为代入,,,由③,,解得
22.解:⑴设直线方程为:代入,得
,另知直线与半圆相交的条件为,设,则,,点位于的右侧,应有,即,(亦可求出的横坐标)
⑵若为正,则点到直线距离
与矛盾,在⑴条件下不可能是正△.
23.⑴由题意设椭圆方程为:,则解得: ,所以椭圆方程为:
⑵设“左特征点”,设,为的平分线,,,下面设直线的方程为,代入得:,代入上式得解得
⑶椭圆的“左特征点”M是椭圆的左准线和x轴的交点证明如下:
证明:设椭圆的左准线与x轴相交于点M,过点A、B分别作的垂线,垂足分别为点C、D。据椭圆第二定义得,
∵∥∥,∴,
∴∵与均为锐角,∴。
∴。∴为的平分线。故点为椭圆的“左特征点”。
椭圆C的中心在原点O,焦点在x轴,它的短轴长为2,过焦点与x轴垂直的直线与椭圆C相交于A,B两点且|AB|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过定点N(1,0)的直线l交椭圆C于C、D两点,交y轴于点P,若
=λ 1
,
=λ2
,求证:λ1+λ2为定值.
查看习题详情和答案>>
(Ⅰ)求椭圆C的方程;
(Ⅱ)过定点N(1,0)的直线l交椭圆C于C、D两点,交y轴于点P,若
PC |
CN |
PD |
DN |
椭圆C的中心在原点O,焦点在x轴,它的短轴长为2,过焦点与x轴垂直的直线与椭圆C相交于A,B两点且|AB|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过定点N(1,0)的直线l交椭圆C于C、D两点,交y轴于点P,若
=λ1
,
=λ2
,求证:λ1+λ2为定值.
查看习题详情和答案>>
(Ⅰ)求椭圆C的方程;
(Ⅱ)过定点N(1,0)的直线l交椭圆C于C、D两点,交y轴于点P,若
PC |
CN |
PD |
DN |