网址:http://m.1010jiajiao.com/timu_id_20557[举报]
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当时,
,则
。
依题意得:,即
解得
第二问当时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,
,则
。
依题意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①当时,
,令
得
当变化时,
的变化情况如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
极小值 |
单调递增 |
极大值 |
|
又,
,
。∴
在
上的最大值为2.
②当时,
.当
时,
,
最大值为0;
当时,
在
上单调递增。∴
在
最大值为
。
综上,当时,即
时,
在区间
上的最大值为2;
当时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则
代入(*)式得:
即,而此方程无解,因此
。此时
,
代入(*)式得: 即
(**)
令
,则
∴在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
查看习题详情和答案>>
长沙市某民营化工企业经过近十年打拼,目前净资产已达3千万元. 由于种种原因,影响了企业的进一步发展,企业领导班子决定对企业内部所有环节进行改革. 据市场调查报告显示:在未来五年内,若引进新的技术及设备改造后,企业的生产总量为x千吨,最大限度不能超过4千吨,而每千吨销售可获纯利P(x)与生产总量x的函数关系为 由于该企业的产品市场占有量较大,产量的大小对每千吨产品的纯利润影响较大. 如果企业的生产总量为1千吨时,市场该产品每千吨销售可获纯利
万元,如果生产总量达到最大限度值4千吨,此时市场需求趋于饱和状态,每千吨销售只能获纯利
万元.企业在人员工资给、产品广告费用及环境污染治理等方面需投入每千吨1万元.
(1)求出常数a,b的值;
(2)求出该企业在未来五年内净资产的总额(单位:千万元)关于生产总量x(单位:千吨)的函数表达式;
(3)当生产总量x(单位:千吨)取值为多少时,该企业在未来五年内净资产的总额(单位:千万元)取最大值,并求出此最大值.
已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是
(A)(1-,2) (B)(0,2)
(C)(
-1,2) (D)(0,1+
)
【解析】 做出三角形的区域如图,由图象可知当直线
经过点B时,截距最大,此时
,当直线经过点C时,直线截距最小.因为
轴,所以
,三角形的边长为2,设
,则
,解得
,
,因为顶点C在第一象限,所以
,即
代入直线
得
,所以
的取值范围是
,选A.
查看习题详情和答案>>