摘要:当k<0时.为使A.需要k.于是k时..
网址:http://m.1010jiajiao.com/timu_id_198282[举报]
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)在D上的“k阶增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,x>0时,f(x)=|x-a|-a,其中a为正常数,若f(x)为R上的“2阶增函数”,
则实数a的取值范围是( )
查看习题详情和答案>>
则实数a的取值范围是( )
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2013型增函数”,则实数a的取值范围是
查看习题详情和答案>>
(-∞,
)
671 |
2 |
(-∞,
)
.671 |
2 |
设函数y=f(x)定义域为R,当x<0时,f(x)>1,且对于任意的x,y∈R,有f(x+y)=f(x)•f(y)成立.数列{an}满足a1=f(0),且 f(an+1)=
(n∈N*).
(Ⅰ) 求f(0)的值;
(Ⅱ) 求数列{an}的通项公式;
(Ⅲ) 是否存在正数k,使(1+
)(1+
)…(1+
)≥k
对一切n∈N*均成立,若存在,求出k的最大值,并证明,否则说明理由.
查看习题详情和答案>>
1 |
f(-2-an) |
(Ⅰ) 求f(0)的值;
(Ⅱ) 求数列{an}的通项公式;
(Ⅲ) 是否存在正数k,使(1+
1 |
a1 |
1 |
a2 |
1 |
an |
2n+1 |