网址:http://m.1010jiajiao.com/timu_id_193486[举报]
已知函数.(
)
(1)若在区间
上单调递增,求实数
的取值范围;
(2)若在区间上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)在区间
上单调递增,
则在区间
上恒成立. …………3分
即,而当
时,
,故
.
…………5分
所以.
…………6分
(2)令,定义域为
.
在区间上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵ …………9分
① 若,令
,得极值点
,
,
当,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当,即
时,同理可知,
在区间
上递增,
有,也不合题意;
…………11分
② 若,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使在此区间上恒成立,只须满足
,
由此求得的范围是
. …………13分
综合①②可知,当时,函数
的图象恒在直线
下方.
查看习题详情和答案>>
设函数.
(Ⅰ) 当时,求
的单调区间;
(Ⅱ) 若在
上的最大值为
,求
的值.
【解析】第一问中利用函数的定义域为(0,2),
.
当a=1时,所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),
.
(1)当时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
查看习题详情和答案>>
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用的定义域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
第二问中,若对任意不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)的定义域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意不等式
恒成立,
问题等价于,
.........5分
由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以; ............6分
当b<1时,;
当时,
;
当b>2时,;
............8分
问题等价于 ........11分
解得b<1 或 或
即
,所以实数b的取值范围是
查看习题详情和答案>>
已知函数的最小值为0,其中
(Ⅰ)求的值;
(Ⅱ)若对任意的有
≤
成立,求实数
的最小值;
(Ⅲ)证明(
).
【解析】(1)解:
的定义域为
由,得
当x变化时,,
的变化情况如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
极小值 |
|
因此,在
处取得最小值,故由题意
,所以
(2)解:当时,取
,有
,故
时不合题意.当
时,令
,即
令,得
①当时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故不合题意.
综上,k的最小值为.
(3)证明:当n=1时,不等式左边==右边,所以不等式成立.
当时,
在(2)中取,得
,
从而
所以有
综上,,
查看习题详情和答案>>
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
当时
单调递减;当
时
单调递增,故当
时,
取最小值
于是对一切恒成立,当且仅当
. ①
令则
当时,
单调递增;当
时,
单调递减.
故当时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,的取值集合为
.
(Ⅱ)由题意知,令
则
令,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即
从而,
又
所以因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>