摘要:①当时.>0.f(x)在上递增.------------4分
网址:http://m.1010jiajiao.com/timu_id_193039[举报]
已知函数f(x)=2x-m(m∈R),g(x)=ax2+
ax+1(a∈R),h(x)=2|x-a|
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
1 | 2 |
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.
已知函数f(x)=2x-m(m∈R),g(x)=ax2+
ax+1(a∈R),h(x)=2|x-a|
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
1 |
2 |
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.
已知函数f(x)=|x|•(a-x),a∈R.
(Ⅰ)当a=4时,画出函数f(x)的大致图象,并写出其单调递增区间;
(Ⅱ)若函数f(x)在x∈[0,2]上是单调递减函数,求实数a的取值范围;
(Ⅲ)若a>0,当实数c分别取何值时,集合{x|f(x)=c}为单元素集,两元素集,三元素集?
查看习题详情和答案>>
(Ⅰ)当a=4时,画出函数f(x)的大致图象,并写出其单调递增区间;
(Ⅱ)若函数f(x)在x∈[0,2]上是单调递减函数,求实数a的取值范围;
(Ⅲ)若a>0,当实数c分别取何值时,集合{x|f(x)=c}为单元素集,两元素集,三元素集?
(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x(x≠3,保留4位有效数字),使得f(x)<0成立;
(2)在曲线上存在两个不同点关于直线y=x对称,求出其坐标;若曲线(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取及加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间上单调递减,在区间上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)
查看习题详情和答案>>
①若f(3)<0,试求a的取值范围;
②写出一组数a,x(x≠3,保留4位有效数字),使得f(x)<0成立;
(2)在曲线上存在两个不同点关于直线y=x对称,求出其坐标;若曲线(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取及加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间上单调递减,在区间上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)
查看习题详情和答案>>
我们为了探究函数 f(x)=x+
,x∈(0,+∞)的部分性质,先列表如下:
请你观察表中y值随x值变化的特点,完成以下的问题.
首先比较容易的看出来:此函数在区间(0,2)上是递减的;
(1)函数f(x)=x+
(x>0)在区间
(2)请你根据上面性质作出此函数的大概图象;
(3)证明:此函数在区间上(0,2)是递减的.
查看习题详情和答案>>
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
首先比较容易的看出来:此函数在区间(0,2)上是递减的;
(1)函数f(x)=x+
4 |
x |
(2,+∞)
(2,+∞)
上递增.当x=2
2
时,y最小=4
4
.(2)请你根据上面性质作出此函数的大概图象;
(3)证明:此函数在区间上(0,2)是递减的.