摘要:∵..∴当时..函数为单调递增.极值点个数为0,
网址:http://m.1010jiajiao.com/timu_id_192657[举报]
函数y=f (x )=-x3+ax2+b(a,b∈R ),
(Ⅰ)要使y=f(x)在(0,1)上单调递增,求a的取值范围;
(Ⅱ)当a>0时,若函数满足y极小值=1,y极大值=,求函数y=f(x)的解析式;
(Ⅲ)若x∈[0,1]时,y=f(x)图象上任意一点处的切线倾斜角为θ,求当0≤θ≤时a的取值范围。
查看习题详情和答案>>
(Ⅰ)要使y=f(x)在(0,1)上单调递增,求a的取值范围;
(Ⅱ)当a>0时,若函数满足y极小值=1,y极大值=,求函数y=f(x)的解析式;
(Ⅲ)若x∈[0,1]时,y=f(x)图象上任意一点处的切线倾斜角为θ,求当0≤θ≤时a的取值范围。
设函数y=ax3+bx2+cx+d的图象与y轴交点为P,且曲线在P点处的切线方程为24x+y-12=0,若函数在x=2处取得极值为-16.
(1)求函数解析式;
(2)确定函数的单调递增区间;
(3)证明:当x∈(-∞,0)时,y<92.5.
查看习题详情和答案>>
(1)求函数解析式;
(2)确定函数的单调递增区间;
(3)证明:当x∈(-∞,0)时,y<92.5.