摘要:故当时..
网址:http://m.1010jiajiao.com/timu_id_192581[举报]
设函数.
(Ⅰ) 当时,求
的单调区间;
(Ⅱ) 若在
上的最大值为
,求
的值.
【解析】第一问中利用函数的定义域为(0,2),
.
当a=1时,所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),
.
(1)当时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
查看习题详情和答案>>

如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O处后发现,在南偏西20°、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东40°的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ°的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出sin(θ°+20°)的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等)
查看习题详情和答案>>
