摘要:(2)当时有3个解
网址:http://m.1010jiajiao.com/timu_id_192576[举报]
有如下几个说法:
①如果x1,x2是方程ax2+bx+c=0的两个实根且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②当△=b2-4ac<0时,二次不等式 ax2+bx+c>0的解集为∅;
③
≤0与不等式(x-a)(x-b)≤0的解集相同;
④
<3与x2-2x<3(x-1)的解集相同.
其中正确说法的个数是( )
①如果x1,x2是方程ax2+bx+c=0的两个实根且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②当△=b2-4ac<0时,二次不等式 ax2+bx+c>0的解集为∅;
③
x-a |
x-b |
④
x2-2x |
x-1 |
其中正确说法的个数是( )
查看习题详情和答案>>
当兔子和狐狸处于同一栖息地时,忽略其他因素,只考虑兔子数量和狐狸数量的相互影响,为了简便起见,不妨做如下假设:
(1)由于自然繁殖,兔子数每年增长10%,狐狸数每年减少15%;
(2)由于狐狸吃兔子,兔子数每年减少狐狸数的0.15倍,狐狸数每年增加兔子数的0.1倍;
(3)第n年时,兔子数量Rn用表示,狐狸数量用Fn表示;
(4)初始时刻(即第0年),兔子数量有R0=100只,狐狸数量有F0=30只.
请用所学知识解决如下问题:
(1)列出兔子与狐狸的生态模型;
(2)求出Rn、Fn关于n的关系式;
(3)讨论当n越来越大时,兔子与狐狸的数量是否能达到一个稳定的平衡状态,说明你的理由.
查看习题详情和答案>>
(1)由于自然繁殖,兔子数每年增长10%,狐狸数每年减少15%;
(2)由于狐狸吃兔子,兔子数每年减少狐狸数的0.15倍,狐狸数每年增加兔子数的0.1倍;
(3)第n年时,兔子数量Rn用表示,狐狸数量用Fn表示;
(4)初始时刻(即第0年),兔子数量有R0=100只,狐狸数量有F0=30只.
请用所学知识解决如下问题:
(1)列出兔子与狐狸的生态模型;
(2)求出Rn、Fn关于n的关系式;
(3)讨论当n越来越大时,兔子与狐狸的数量是否能达到一个稳定的平衡状态,说明你的理由.
有如下程序框图,它表示输入x,求函数y=f(x)的值的一个算法,
(1)令输入n=3,请写出输出y=f(x)的解析式;
(2)请根据(1)直接写出当输入n=10时输出f(x)的解析式,若此时的f(x)满足:f(x)=a10(x-1)10+a9(x-1)9+…+a1(x-1)+a0,求a0和a8.
查看习题详情和答案>>
(1)令输入n=3,请写出输出y=f(x)的解析式;
(2)请根据(1)直接写出当输入n=10时输出f(x)的解析式,若此时的f(x)满足:f(x)=a10(x-1)10+a9(x-1)9+…+a1(x-1)+a0,求a0和a8.
当兔子和狐狸处于同一栖息地时,忽略其他因素,只考虑兔子数量和狐狸数量的相互影响,为了简便起见,不妨做如下假设:
(1)由于自然繁殖,兔子数每年增长10%,狐狸数每年减少15%;
(2)由于狐狸吃兔子,兔子数每年减少狐狸数的0.15倍,狐狸数每年增加兔子数的0.1倍;
(3)第n年时,兔子数量Rn用表示,狐狸数量用Fn表示;
(4)初始时刻(即第0年),兔子数量有R0=100只,狐狸数量有F0=30只.
请用所学知识解决如下问题:
(1)列出兔子与狐狸的生态模型;
(2)求出Rn、Fn关于n的关系式;
(3)讨论当n越来越大时,兔子与狐狸的数量是否能达到一个稳定的平衡状态,说明你的理由.
查看习题详情和答案>>
(1)由于自然繁殖,兔子数每年增长10%,狐狸数每年减少15%;
(2)由于狐狸吃兔子,兔子数每年减少狐狸数的0.15倍,狐狸数每年增加兔子数的0.1倍;
(3)第n年时,兔子数量Rn用表示,狐狸数量用Fn表示;
(4)初始时刻(即第0年),兔子数量有R0=100只,狐狸数量有F0=30只.
请用所学知识解决如下问题:
(1)列出兔子与狐狸的生态模型;
(2)求出Rn、Fn关于n的关系式;
(3)讨论当n越来越大时,兔子与狐狸的数量是否能达到一个稳定的平衡状态,说明你的理由.