摘要:当时, 取得极小值为. -- 6分
网址:http://m.1010jiajiao.com/timu_id_192460[举报]
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依题意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)设切点为(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.
∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
查看习题详情和答案>>
已知点P(x1,y1),Q(x2,y2)(x1≠x2)是函数f(x)=x3+ax2+bx+c的图象上的两点,若对于任意实数x1,x2,当x1+x2=0时,以P,Q为切点分别作函数f(x)的图象的切线,则两切线必平行,并且当x=1时函数f(x)取得极小值1.
(1)求函数f(x)的解析式;
(2)若M(t,g(t))是函数g(x)=f(x)+3x-3(1≤x≤6)的图象上的一点,过M作函数g(x)图象的切线,切线与x轴和直线x=6分别交于A,B两点,直线x=6与x轴交于C点,求△ABC的面积的最大值.
查看习题详情和答案>>
(1)求函数f(x)的解析式;
(2)若M(t,g(t))是函数g(x)=f(x)+3x-3(1≤x≤6)的图象上的一点,过M作函数g(x)图象的切线,切线与x轴和直线x=6分别交于A,B两点,直线x=6与x轴交于C点,求△ABC的面积的最大值.
已知点P(x1,y1),Q(x2,y2)(x1≠x2)是函数f(x)=x3+ax2+bx+c的图象上的两点,若对于任意实数x1,x2,当x1+x2=0时,以P,Q为切点分别作函数f(x)的图象的切线,则两切线必平行,并且当x=1时函数f(x)取得极小值1.
(1)求函数f(x)的解析式;
(2)若M(t,g(t))是函数g(x)=f(x)+3x-3(1≤x≤6)的图象上的一点,过M作函数g(x)图象的切线,切线与x轴和直线x=6分别交于A,B两点,直线x=6与x轴交于C点,求△ABC的面积的最大值.
查看习题详情和答案>>
(1)求函数f(x)的解析式;
(2)若M(t,g(t))是函数g(x)=f(x)+3x-3(1≤x≤6)的图象上的一点,过M作函数g(x)图象的切线,切线与x轴和直线x=6分别交于A,B两点,直线x=6与x轴交于C点,求△ABC的面积的最大值.
查看习题详情和答案>>