摘要:(3)又∵表示满足的正整数的个数.
网址:http://m.1010jiajiao.com/timu_id_192392[举报]
第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.
如果存在常数使得数列满足:若是数列中的一项,则也是数列中的一项,称数列为“兑换数列”,常数是它的“兑换系数”.
(1)若数列:是“兑换系数”为的“兑换数列”,求和的值;
(2)已知有穷等差数列的项数是,所有项之和是,求证:数列是“兑换数列”,并用和表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.
查看习题详情和答案>>
第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.
如果存在常数使得数列满足:若是数列中的一项,则也是数列中的一项,称数列为“兑换数列”,常数是它的“兑换系数”.
(1)若数列:是“兑换系数”为的“兑换数列”,求和的值;
(2)已知有穷等差数列的项数是,所有项之和是,求证:数列是“兑换数列”,并用和表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.
如果存在常数使得数列满足:若是数列中的一项,则也是数列中的一项,称数列为“兑换数列”,常数是它的“兑换系数”.
(1)若数列:是“兑换系数”为的“兑换数列”,求和的值;
(2)已知有穷等差数列的项数是,所有项之和是,求证:数列是“兑换数列”,并用和表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.
如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列bn的项数是n0(n0≥3),所有项之和是B,求证:数列bn是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.
查看习题详情和答案>>
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列bn的项数是n0(n0≥3),所有项之和是B,求证:数列bn是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.