网址:http://m.1010jiajiao.com/timu_id_178797[举报]
(本题满分16分,第1问4分,第2问6分,第3问6分)
已知数列中,且点在直线上.
(1)求数列的通项公式;
(2)若函数求函数的最小值;
(3)设表示数列的前项和。试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由.
查看习题详情和答案>>(本题满分20分,其中第1小题4分,第2小题6分,第3小题10分)
已知是直线上的个不同的点(,、均为非零常数),其中数列为等差数列.
(1)求证:数列是等差数列;
(2)若点是直线上一点,且,求证: ;
(3) 设,且当时,恒有(和都是不大于的正整数, 且).试探索:在直线上是否存在这样的点,使得成立?请说明你的理由.
查看习题详情和答案>>已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式 恒成立,求实数的取值范围.
【解析】第一问利用的定义域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。
解: (I)的定义域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是 ........4分
(II)若对任意不等式恒成立,
问题等价于, .........5分
由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以; ............6分
当b<1时,;
当时,;
当b>2时,; ............8分
问题等价于 ........11分
解得b<1 或 或 即,所以实数b的取值范围是
查看习题详情和答案>>