摘要:⑴求曲线C2的表达式并求函数的单调区间,
网址:http://m.1010jiajiao.com/timu_id_178354[举报]
平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于非零常数m的点的轨迹,加上A1,A2两点,所成的曲线C可以是圆,椭圆或双曲线.
(I)求曲线C的方程,并讨论C的形状与m值的关系.
(Ⅱ)当m=-1时,对应的曲线为C1;对给定的m∈(-∞,-1),对应的曲线为C2,若曲线C1的斜率为1的切线与曲线C2相交于A,B两点,且
•
=2(O为坐标原点),求曲线C2的方程.
查看习题详情和答案>>
(I)求曲线C的方程,并讨论C的形状与m值的关系.
(Ⅱ)当m=-1时,对应的曲线为C1;对给定的m∈(-∞,-1),对应的曲线为C2,若曲线C1的斜率为1的切线与曲线C2相交于A,B两点,且
OA |
OB |
(2012•唐山二模)选修4-4:坐标系与参数方程
极坐标系的极点为直角坐标系xOy的原点,极轴为z轴的正半轴,两种坐标系的长度单位相同,己知圆C1的极坐标方程为p=4(cosθ+sinθ,P是C1上一动点,点Q在射线OP上且满足OQ=
OP,点Q的轨迹为C2.
(I)求曲线C2的极坐标方程,并化为直角坐标方程;
( II)已知直线l的参数方程为
(t为参数,0≤φ<π),l与曲线C2有且只有一个公共点,求φ的值.
查看习题详情和答案>>
极坐标系的极点为直角坐标系xOy的原点,极轴为z轴的正半轴,两种坐标系的长度单位相同,己知圆C1的极坐标方程为p=4(cosθ+sinθ,P是C1上一动点,点Q在射线OP上且满足OQ=
1 |
2 |
(I)求曲线C2的极坐标方程,并化为直角坐标方程;
( II)已知直线l的参数方程为
|