网址:http://m.1010jiajiao.com/timu_id_177012[举报]
一、选择题(本大题共12小题,每小题4分,共48分)
1.B 2.A 3.D 4.C 5.D 6.C
7.A 8.C 9.B 10.C 11.A 12.B
二、填空题(本大题共4小题,每小题4分,共16分)
13.
14.
15. 增函数的定义
16. 与该平面平行的两个平面
三、解答题(本大题共3小题,每小题12分,共36分)
17.(本小题满分12分)
解:(Ⅰ)涉及两个变量,年龄与脂肪含量.
因此选取年龄为自变量,脂肪含量为因变量
.
作散点图,从图中可看出与
具有相关关系.
┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)对
的回归直线方程为
.
当时,
,
.
当时,
,
.
所以岁和
岁的残差分别为
和
.
┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分
证明:由于,
,
所以只需证明.
展开得,即
.
所以只需证.
因为显然成立,
所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分
18B. (本小题满分12分)
证明:(Ⅰ)因为,所以
.
由于函数是
上的增函数,
所以.
同理, .
两式相加,得.┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)逆命题:
若,则
.
用反证法证明
假设,那么
所以.
这与矛盾.故只有
,逆命题得证.
┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分
解:(Ⅰ)由于,且
.
所以当时,得
,故
.
从而.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)数列不可能为等差数列,证明如下:
由,
得
若存在,使
为等差数列,则
,
即,解得
.
于是,
.
这与为等差数列矛盾.所以,对任意
,数列
都不可能是等差数列.
┄┄┄┄┄┄┄┄┄┄┄┄12分
19B. (本小题满分12分)
解:(Ⅰ),
.
,
.┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)由(Ⅰ)可得,
,
.
猜想:是公比为
的等比数列.
证明如下:因为,
又,所以
,
所以数列是首项为
,公比为
的等比数列.┄┄┄┄┄┄┄┄┄┄┄┄12分