摘要:(2)求以AC为棱EAC与DAC为面的二面角θ的大小.

网址:http://m.1010jiajiao.com/timu_id_171816[举报]

 

一、选择题

1.C  2.A  3.D  4.C  5.B  6.C  7.D  8.B  9.A  10.C  11.B  12.B

1,3,5

13.   14.=0   15.-   16.3

三、解答题

17.解:(1)∵  ……2分

   …………4分

……6分

(2)由 ……8分

,故tanB=2  …………10分

18.解:(1)设取出的球不放回袋中,第3次取球才得到红球的概率为P1

   ………………6分

(2)设取出的球放回袋中,第3次取球才得到红球的概率P2

   ………………12分

19.(1)证明:∵底面ABCD是菱形,且∠ABC=60°

∴AB=AD=AC=a,在△PAB中,由PA2+AB2=2a=PB2得PA⊥AB,

同理得PA⊥AD, ∴PA⊥平面ABCD

(2)作EG//PA交AD于G,由PA⊥平面ABCD知EG⊥平面ABCD,

作GH//AC于H,连结EH,则EH⊥AC,∴∠EHG为二面角的平面角 ……8分

∵PE:ED=2:1, ∴EG=,……10分

    …………12分

20.(本小题12分)

解:(Ⅰ)∵

的公比为的等比数列 …………3分

又n=1时, ……6分

(Ⅱ)∵   …………8分

   ……   ……10分

以上各式相加得:]

  …………12分

21.(本小题12分)

解:(Ⅰ)由题意,设双曲线方程为  ……2分

,∴方程为 …4分

(Ⅱ)由消去y得 ……7分

当k=2时得

     

  ……10分

当k=-2时同理得

综上:∠MFN为直角.   …………12分

22.解:(1)   …………2分

上为单调函数,而不可能恒成立

所以上恒成立,

   …………6分

(2)依题意,方程有两个不同的实数根

   ……9分

            

所以

所以 

综上:  ………………12分

 

 

 如图,在底面是菱形的四棱锥P—ABCD中,,点E在PD上,且PE:ED=2:1。

   (I)证明:平面ABCD;

   (II)求以AC为棱,EAC与DAC为面的二面角的大小。

   (III)在棱DC上是否存在一点F,使BF//平面AEC?证明你的结论

 

 

 

 

 

 

 

 

 

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网