网址:http://m.1010jiajiao.com/timu_id_164100[举报]
1、D 2、C 3、C 4、C 5、B 6、C
7、4 8、 9、 10、
11、解:(Ⅰ)∵ 底面ABCD是正方形,
∴AB⊥BC,
又平面PBC⊥底面ABCD
平面PBC ∩ 平面ABCD=BC
∴AB ⊥平面PBC
又PC平面PBC
∴AB ⊥CP ………………3分
(Ⅱ)解法一:体积法.由题意,面面,
取中点,则
面.
再取中点,则 ………………5分
设点到平面的距离为,则由
. ………………7分
解法二:面
取中点,再取中点
,
过点作,则
在中,
由
∴点到平面的距离为。 ………………7分
(Ⅲ)
面
就是二面角的平面角.
∴二面角的大小为45°. ………………12分
12、解:(I)证明:在直棱柱ABC-A1B
∵
∠ACB=90º,∴A
∵CG平面C1CBB1,∴A
在矩形C1CBB1中,CC1=BB1=2BC,G为BB1的中点,
CG=BC,C
∴∠CGC1=90,即CG⊥C
而A
∴CG⊥平面A1GC1。
∴平面A1CG⊥平面A1GC1。┉┉┉┉┉┉┉┉6分
(II)由于CC1平面ABC,
∠ACB=90º,建立如图所示的空间坐标系,设AC=BC=CC1=a,则A(a,0,0),B(0,a,0)
A1(a,0,
∴=(a,0,
设平面A1CG的法向量n1=(x1,y1,z1),
由得
令z1=1,n1=(-2,-1,1). ┉┉┉┉┉┉┉┉9分
又平面ABC的法向量为n2=(0,0,1) ┉┉┉┉┉┉┉┉10分
设平面ABC与平面A1CG所成锐二面角的平面角为θ,
则┉┉┉┉┉┉┉┉11分
即平面ABC与平面A1CG所成锐二面角的平面角的余弦值为。┉┉┉12分