摘要:如果数学竞赛获一等奖.该学生估计自己进入国家集训队的概率是0.4.若进入国家集训队.则提前录.若未被录取.则再按② ③的顺序依次录取,前面已被录取后.不得参加后面的考试或录取.(1) 求该考生参加自主招生考试的概率,
网址:http://m.1010jiajiao.com/timu_id_163086[举报]
一名高二学生盼望进入某名牌大学学习,不放弃能考入该大学的任何一次机会.已知该大学通过以下任何一种方式都可被录取:
①2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛壹等奖获得者中选拔,通过考试进入集训队则能被该大学提前录取);
②2010年3月自主招生考试通过并且2010年6月高考分数达重点线;
③2010年6月高考达到该校录取分数线(该校录取分数线高于重点线).
该名考生竞赛获省一等奖.自主招生考试通过.高考达重点线.高考达该校分数线等事件的概率如下表:
如果数学竞赛获省一等奖,该学生估计自己进入国家集训队的概率是0.4.
(1)求该学生参加自主招生考试的概率;
(2)求该学生参加考试次数的分布列与数学期望;
(3)求该学生被该大学录取的概率.
查看习题详情和答案>>
①2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛壹等奖获得者中选拔,通过考试进入集训队则能被该大学提前录取);
②2010年3月自主招生考试通过并且2010年6月高考分数达重点线;
③2010年6月高考达到该校录取分数线(该校录取分数线高于重点线).
该名考生竞赛获省一等奖.自主招生考试通过.高考达重点线.高考达该校分数线等事件的概率如下表:
事件 | 省数学竞获一等奖 | 自主招生考试通过 | 高考达重点线 | 高考达该校分数线 |
概率 | 0.5 | 0.7 | 0.8 | 0.6 |
(1)求该学生参加自主招生考试的概率;
(2)求该学生参加考试次数的分布列与数学期望;
(3)求该学生被该大学录取的概率.
一名高二学生盼望进入某名牌大学学习,不放弃能考入该大学的任何一次机会.已知该大学通过以下任何一种方式都可被录取:
①2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛壹等奖获得者中选拔,通过考试进入集训队则能被该大学提前录取);
②2010年3月自主招生考试通过并且2010年6月高考分数达重点线;
③2010年6月高考达到该校录取分数线(该校录取分数线高于重点线).
该名考生竞赛获省一等奖.自主招生考试通过.高考达重点线.高考达该校分数线等事件的概率如下表:
如果数学竞赛获省一等奖,该学生估计自己进入国家集训队的概率是0.4.
(1)求该学生参加自主招生考试的概率;
(2)求该学生参加考试次数的分布列与数学期望;
(3)求该学生被该大学录取的概率.
查看习题详情和答案>>
①2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛壹等奖获得者中选拔,通过考试进入集训队则能被该大学提前录取);
②2010年3月自主招生考试通过并且2010年6月高考分数达重点线;
③2010年6月高考达到该校录取分数线(该校录取分数线高于重点线).
该名考生竞赛获省一等奖.自主招生考试通过.高考达重点线.高考达该校分数线等事件的概率如下表:
事件 | 省数学竞获一等奖 | 自主招生考试通过 | 高考达重点线 | 高考达该校分数线 |
概率 | 0.5 | 0.7 | 0.8 | 0.6 |
(1)求该学生参加自主招生考试的概率;
(2)求该学生参加考试次数的分布列与数学期望;
(3)求该学生被该大学录取的概率.
查看习题详情和答案>>
有一高二升高三的学生盼望进入某名牌大学学习,假设该名牌大学由以下每种方式都可录取:①2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛一等奖中选拔);②2010年3月自主招生考试通过并且2010年6月高考分数达重点线;③2010年6月高考达到该校录取分数线(该校录取分数线高于重点线).该考生具有参加省数学竞赛、自主招生和高考的资料且估计自己通过各种考试的概率如下表:
如果数学竞赛获省一等奖,该学生估计自己进入国际集训队的概率是0.4.若进入国家集训队,则提前录取,若未被录取,则再按②,③顺序依次录取;前面已经被录取后,不得参加后面的考试或录取.
(1)求该考生参加自主招生考试的概率;
(2)求该学生参加考试的次数ξ的分布列及数学期望;
(3)求该学生被该校录取的概率. 查看习题详情和答案>>
省数学竞赛获一等奖 | 自主招生通过 | 高考达重点线 | 高考达该校分数线 |
0.5 | 0.7 | 0.8 | 0.6 |
(1)求该考生参加自主招生考试的概率;
(2)求该学生参加考试的次数ξ的分布列及数学期望;
(3)求该学生被该校录取的概率. 查看习题详情和答案>>
有一高二升高三的学生盼望进入某名牌大学学习,假设该名牌大学由以下每种方式都可录取:①2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛一等奖中选拔);②2010年3月自主招生考试通过并且2010年6月高考分数达重点线;③2010年6月高考达到该校录取分数线(该校录取分数线高于重点线).该考生具有参加省数学竞赛、自主招生和高考的资料且估计自己通过各种考试的概率如下表:
如果数学竞赛获省一等奖,该学生估计自己进入国际集训队的概率是0.4.若进入国家集训队,则提前录取,若未被录取,则再按②,③顺序依次录取;前面已经被录取后,不得参加后面的考试或录取.
(1)求该考生参加自主招生考试的概率;
(2)求该学生参加考试的次数ξ的分布列及数学期望;
(3)求该学生被该校录取的概率.
查看习题详情和答案>>
省数学竞赛获一等奖 | 自主招生通过 | 高考达重点线 | 高考达该校分数线 |
0.5 | 0.7 | 0.8 | 0.6 |
(1)求该考生参加自主招生考试的概率;
(2)求该学生参加考试的次数ξ的分布列及数学期望;
(3)求该学生被该校录取的概率.
查看习题详情和答案>>
(本小题满分12分)一名高二学生盼望进入某名牌大学学习,不放弃能考入该大学的任何一次机会。已知该大学通过以下任何一种方式都可被录取:
① 2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛壹等奖获得者中选拔,通过考试进入集训队则能被该大学提前录取);
② 2010年3月自主招生考试通过并且2010年6月高考分数达重点线;
③ 2010年6月高考达到该校录取分数线(该校录取分数线高于重点线)。
该名考生竞赛获省一等奖、自主招生考试通过、高考达重点线、高考达该校分数线等事件的概率如下表:
事件 | 省数学竞获一等奖 | 自主招生考试通过 | 高考达重点线 | 高考达该校分数线 |
概率 | 0.5 | 0.7 | 0.8 | 0.6 |
如果数学竞赛获省一等奖,该学生估计自己进入国家集训队的概率是0.4。
(1)求该学生参加自主招生考试的概率;
(2)求该学生参加考试次数的分布列与数学期望;
(3)求该学生被该大学录取的概率。
查看习题详情和答案>>