网址:http://m.1010jiajiao.com/timu_id_160948[举报]
⊙O1和⊙O2的极坐标方程分别为,
.
⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.
【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用
(1)中,借助于公式,
,将极坐标方程化为普通方程即可。
(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。
解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(I),
,由
得
.所以
.
即为⊙O1的直角坐标方程.
同理为⊙O2的直角坐标方程.
(II)解法一:由解得
,
即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.
解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x
查看习题详情和答案>>
下面给出两种不同的解法.
解法一:∵P(A)=,P(B)=
,
∴P(A+B)=P(A)+P(B)=1.
解法二:A+B这一事件包括4种结果,即出现1,2,3和5,
∴P(A+B)=.
请你判断解法一和解法二的正误.
查看习题详情和答案>>
设椭圆(常数
)的左右焦点分别为
,
是直线
上的两个动点,
.
(1)若,求
的值;
(2)求的最小值.
【解析】第一问中解:设,
则
由得
由
,得
②
第二问易求椭圆的标准方程为:
,
所以,当且仅当或
时,
取最小值
.
解:设,
……………………1分
则,由
得
①……2分
(1)由,得
② ……………1分
③ ………………………1分
由①、②、③三式,消去,并求得
.
………………………3分
(2)解法一:易求椭圆的标准方程为:
.………………2分
, ……4分
所以,当且仅当或
时,
取最小值
.…2分
解法二:,
………………4分
所以,当且仅当或
时,
取最小值
查看习题详情和答案>>
已知直三棱柱中,
,
,
是
和
的交点, 若
.
(1)求的长; (2)求点
到平面
的距离;
(3)求二面角的平面角的正弦值的大小.
【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA
为正方形,
AC=3
第二问中,利用面BBC
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为
解法一: (1)连AC交A
C于E, 易证ACC
A
为正方形,
AC=3
…………… 5分
(2)在面BBC
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
… 8分
(3) 易得AC面A
CB,
过E作EH
A
B于H, 连HC
,
则HC
A
B
C
HE为二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=
二面角C
-A
B-C的平面角的正弦大小为
……… 12分
解法二: (1)分别以直线CB、CC
、C
A为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
=(2, -
, -
),
=(0,
-3, -h) ……… 4分
·
=0,
h=3
(2)设平面ABC
得法向量
=(a, b, c),则可求得
=(3, 4, 0) (令a=3)
点A到平面A
BC
的距离为H=|
|=
……… 8分
(3) 设平面ABC的法向量为
=(x, y, z),则可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
满足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小为
查看习题详情和答案>>