摘要:化简得(当时也满足).
网址:http://m.1010jiajiao.com/timu_id_159997[举报]
请先阅读:
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
+
x+
x2+…+
xn(x∈R,整数n≥2),证明:n[(1+x)n-1-1]=2
x+3
x2+4
x3+…+n
xn-1;
(Ⅱ)当整数n≥3时,求
-2
+3
-…+(-1)n-1n
的值;
(Ⅲ)当整数n≥3时,证明:2
-3•2
+4•3
+…+(-1)n-2n(n-1)
=0.
查看习题详情和答案>>
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | 2 n |
C | 3 n |
C | 4 n |
C | n n |
(Ⅱ)当整数n≥3时,求
C | 1 n |
C | 2 n |
C | 3 n |
C | n n |
(Ⅲ)当整数n≥3时,证明:2
C | 2 n |
C | 3 n |
C | 4 n |
C | n n |
请先阅读:
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(x∈R,整数n≥2),证明:;
(Ⅱ)当整数n≥3时,求的值;
(Ⅲ)当整数n≥3时,证明:.
查看习题详情和答案>>
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(x∈R,整数n≥2),证明:;
(Ⅱ)当整数n≥3时,求的值;
(Ⅲ)当整数n≥3时,证明:.
查看习题详情和答案>>
请先阅读:
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
+
x+
x2+…+
xn(x∈R,整数n≥2),证明:n[(1+x)n-1-1]=2
x+3
x2+4
x3+…+n
xn-1;
(Ⅱ)当整数n≥3时,求
-2
+3
-…+(-1)n-1n
的值;
(Ⅲ)当整数n≥3时,证明:2
-3•2
+4•3
+…+(-1)n-2n(n-1)
=0.
查看习题详情和答案>>
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
C | 0n |
C | 1n |
C | 2n |
C | nn |
C | 2n |
C | 3n |
C | 4n |
C | nn |
(Ⅱ)当整数n≥3时,求
C | 1n |
C | 2n |
C | 3n |
C | nn |
(Ⅲ)当整数n≥3时,证明:2
C | 2n |
C | 3n |
C | 4n |
C | nn |