摘要:故或.
网址:http://m.1010jiajiao.com/timu_id_152309[举报]
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式 恒成立,求实数的取值范围.
【解析】第一问利用的定义域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。
解: (I)的定义域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是 ........4分
(II)若对任意不等式恒成立,
问题等价于, .........5分
由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以; ............6分
当b<1时,;
当时,;
当b>2时,; ............8分
问题等价于 ........11分
解得b<1 或 或 即,所以实数b的取值范围是
查看习题详情和答案>>
由旧知引新知,温故而知新,推陈出新,这便是数学中的类比.平面几何中的许多内容可以通过类比推广到空间,这里首先就要将平面直角坐标系推广到空间直角坐标系.你已经学习了立体几何初步的一些知识,你能举出一些由平面几何探究空间问题的例子、思想或方法吗?
下列结论中正确的是
A.若|a|=|b|,则a,b的长度相等且方向相同或相反
B.若向量,满足,且与方向相同,则
C.若a=b,则a//b
D.由于零向量方向不定,故0不能与任何向量平行
查看习题详情和答案>>