摘要:比较l的两个方程,应有将x1=2-x2代入第二个方程,得-(2-x2)2=x22-4,
网址:http://m.1010jiajiao.com/timu_id_15212[举报]
21、设f(x)=x2+bx+c (b,c为常数),方程f(x)-x=0的两个实根为x1、x2且满足x1>0,x2-x1>1.
(1)求证:b2>2(b+2c);
(2)0<t<x1,比较f(t)与x1的大小;
(3)若当x∈[-1,1]时,对任意的x都有|f(x)|≤1,求证:|1+b|≤2.
查看习题详情和答案>>
(1)求证:b2>2(b+2c);
(2)0<t<x1,比较f(t)与x1的大小;
(3)若当x∈[-1,1]时,对任意的x都有|f(x)|≤1,求证:|1+b|≤2.
20、设f(x)=x2+bx+c(b、c为常数),方程f(x)=x的两个实数根为x1、x2,且满足x1>0,x2-x1>1.
(Ⅰ)求证:b2>2(b+2c);
(Ⅱ)设0<t<x1,比较f(t)与x1的大小.
查看习题详情和答案>>
(Ⅰ)求证:b2>2(b+2c);
(Ⅱ)设0<t<x1,比较f(t)与x1的大小.
设f(x)=x2+bx+c(b、c为常数),方程f(x)=x的两个实数根为x1、x2,且满足x1>0,x2-x1>1.
(Ⅰ)求证:b2>2(b+2c);
(Ⅱ)设0<t<x1,比较f(t)与x1的大小.
查看习题详情和答案>>
(Ⅰ)求证:b2>2(b+2c);
(Ⅱ)设0<t<x1,比较f(t)与x1的大小.
查看习题详情和答案>>